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ABSTRACT OF THE DISSERTATION

Compositional Value-based Methods for Planning and Generative Modeling

by

Chenning Yu

Doctor of Philosophy in Computer Science

University of California San Diego, 2025

Professor Sicun Gao, Chair

Learning-based models often struggle to generalize from simple training scenarios to

more complex tasks. For instance, a model that effectively coordinates small groups of robots

may fail on larger teams and denser crowds. Similarly, diffusion models capable of generating

images from simple prompts often underperform when faced with more complex requirements.

This dissertation presents a unifying framework for constructing compositional value landscapes

designed to enable scalable and composable decision-making and generation.

We consider compositional generalization problems that involve either maximizing more

complex objective functions and satisfying more complex constraints. We consider a diverse

set of planning and generation problem, including trajectory planning and control, multi-agent

xiv



coordination, and diffusion-based generative modeling for image synthesis. We use a unifying

approach of constructing value landscapes or scoring functions that can be naturally composed

through graph-based abstractions or logical operations. They then enable generalization from

training on simple to complex inference tasks without additional training. We demonstrate the

effectiveness of our approach across a range of domains, including motion planning, multi-agent

systems, safe navigation, and visual generative modeling.
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Chapter 1

Introduction

In 1956, John McCarthy and his colleagues organized the Dartmouth Conference, marking

the birth of artificial intelligence (AI) as a field. At the time, AI was defined as "the conjecture

that every aspect of learning or any other feature of intelligence can in principle be so precisely

described that a machine can be made to simulate it" [115].

Retrospectively, it is interesting to observe the gap between this early definition of AI

and many of the current state-of-the-art machine learning systems. On today’s Oxford English

Dictionary, AI is defined as "capacity of computers or other machines to exhibit or simulate

intelligent behaviour" - the conjecture to precisely describe the intelligence is no longer required.

Modern AI systems, such as Stable Diffusion and ChatGPT [141, 135], often rely on large

amounts of data and complex architectures to learn from examples rather than being explicitly

programmed with rules or heuristics. From Symbolic AI to data-driven methods, the shift reflects

a move from “understanding intelligence” to “engineering systems that behave intelligently”.

Generalization is a key factor to drive this transition. McCarthy’s 1956 vision assumed

that intelligence could be described in symbolic, logical rules—leading to decades of research

into rule-based systems and formal reasoning (e.g., expert systems). However, this approach ran

into major roadblocks: (1) Combinatorial explosion in complex real-world tasks. (2) Brittleness:

1



systems failed when encountering novel or ambiguous inputs. (3) Knowledge acquisition bottle-

neck: it was hard to hand-code the vast domain knowledge needed. Modern machine learning

systems mitigates the bottlenecks by learning patterns from large amount of data, and is more

effective to generalize from training data to unseen examples.

Yet, it is still crtical to think about whether modern machine learning systems truly avoid

the 3 bottlenecks mentioned above. While they can generalize from training data to unseen

examples to some extent, they still struggle with compositional generalization, i.e., the ability

to flexibly combine known components to solve new, more complex problems. This challenge

is evident across various domains of artificial intelligence, including planning and generative

modeling. For instance, a learned motion planner can learn to navigate simple environments but

often fail when extended to high-dimensional configuration spaces or environments with intricate

constraints. Similarly, state-of-the-art generative models such as diffusion models can synthesize

compelling images from individual object prompts, but their performance degrades when asked

to satisfy multi-object and relational constraints within a single generation.

While it is very tempting to attribute these limitations to the lack of sufficient training

data and collect more data to train the models, we propose an alternative approach which may be

more efficient, and requires potentially much less data. Our key idea is to develop compositional

value-based methods — the value functions that are naturally composable through logic-based or

graph-based structures. By enabling such functions, we can build decision-making or generative

systems that generalize from simple instances to complex tasks, without requiring retraining.

These value-based functions serve as inductive scaffolds that encode compositionality directly into

the learning process, and they are implemented through models such as Graph Neural Networks

(GNNs), Graph Transformers, and diffusion-based scoring mechanisms.

One intriguing property is that these funcitons are typically easy to learn and require

relatively small amount of data. Furthermore, the composed value functions can generalize to

new scenarios with unseen combinations of the components from the data without additional

2



retraining. This compositional framework fundamentally shifts the paradigm from learning

monolithic models that struggle with compositional generalization to learning simple components

that can be flexibly combined, which is both data efficient and effective to generalize.

We investigate this framework through four applications, each targeting a major research

area where compositional reasoning is critical. First, we develop GNN-based models for sampling-

based motion planning, focusing on reducing collision checking when taking unseen combinations

of graph nodes. Second, we propose a graph transformer architecture for bounded-suboptimal

multi-agent planning, which leverages transformer-based heuristics to accelerate coordination

across large agent teams given solely data from small agent swarm. Third, we introduce control

admissibility models using GNNs to enforce safety constraints in multi-agent navigation and

demonstrate generalization to unseen combination of more agents. Finally, we extend the

compositional framework to the domain of diffusion-based generative modeling, where we design

a rejection-sampling strategy guided by compositional lift scores that improves the controllability

for combinations of interested objects in text-to-image tasks.

The remainder of this dissertation is organized as follows:

Chapter 2 introduces a GNN-based framework for reducing collision checking in sampling-

based motion planning, showcasing how graph-based value functions can accelerate planning in

high-dimensional continuous spaces and generalize to unseen combinations of graph nodes.

Chapter 3 presents a graph transformer approach for multi-agent pathfinding with bounded

suboptimality, enabling near-optimal planning in environments with large agent populations that

is 2-3x than the trained agent population size.

Chapter 4 focuses on learning control admissibility models using GNNs for safe multi-

agent navigation, highlighting how graph decomposition and neural estimation support the safety

enforcement and generalization to unseen combinations of more agents that is 300x than the

trained agent population size.

Chapter 5 explores compositionality in generative modeling, proposing lift-score-based

3



rejection sampling methods that improve the generalization of controllability to rare combinations

of interested objects in text-to-image tasks.

Finally, Chapter 6 concludes with a discussion on the future directions.
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Chapter 2

Reducing Collision Checking for

Sampling-Based Motion Planning Using

Graph Neural Networks

Sampling-based motion planning is a popular approach in robotics for finding paths in

continuous configuration spaces. Checking collision with obstacles is the major computational

bottleneck in this process. We propose new learning-based methods for reducing collision

checking to accelerate motion planning by training graph neural networks (GNNs) that perform

path exploration and path smoothing. Given random geometric graphs (RGGs) generated from

batch sampling, the path exploration component iteratively predicts collision-free edges to

prioritize their exploration. The path smoothing component then optimizes paths obtained from

the exploration stage. The methods benefit from the ability of GNNs of capturing geometric

patterns from RGGs through batch sampling and generalize better to unseen environments.

Experimental results show that the learned components can significantly reduce collision checking

and improve overall planning efficiency in challenging high-dimensional motion planning tasks.
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2.1 Introduction

Sampling-based planning is a popular approach to high-dimensional continuous motion

planning in robotics [96, 37, 79, 74, 51, 158, 95]. The idea is to iteratively sample configurations

of the robots and construct one or multiple exploration trees to probe the free space, such that the

start and goal states are eventually connected by some collision-free path through the sampled

states, ideally with path cost minimized. This motion planning problem is hard, theoretically

PSPACE-complete [138], and existing algorithms are challenged when planning motions of robots

with a few degrees of freedom [89, 38, 11, 109, 28, 38]. In particular, the planning algorithms

need to repeatedly check whether an edge connecting two sample states is feasible, i.e., that no

state along the edge collides with any obstacle. This collision checking operation is the major

computational bottleneck in the planning process and by itself NP-hard in general [75, 23]. For

instance, consider the 7D Kuka arm planning problem in the environment shown in Figure 1.

The leading sampling-based planning algorithm BIT* [51] spends about 28.6 seconds to find a

complete motion plan for the robot, in which 20.2s (70.6% of time) is spent on collision checking.

In comparison, it only takes 0.06s (0.2% of time) for sampling all the probing states needed for

constructing random graphs for completing the search.

Learning-based approaches have become popular for accelerating motion planning. Many

recent approaches learn patterns of the configuration spaces to improve the sampling of the probing

states, typically through reinforcement learning or imitation learning [77, 71, 188, 133, 25]. For

instance, Ichter et al. [71] and motion planning networks [133] apply imitation learning on

collected demonstrations to bias the sampling process. The NEXT algorithm [25] provides a state-

of-the-art design for embedding high-dimensional continuous state spaces into low-dimensional

representations, while balancing exploration and exploitation in the sampling process. It has

demonstrated clear benefits of using learning-based components to reduce samples and accelerate

planning. However, we believe two aspects in NEXT can be improved, if we shift the focus from
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reducing sample complexity to reducing collision checking. First, instead of taking the grid-based

encoding of the entire workspace as input, we can use the graphs formed by batches of samples

from the free space to better capture the geometric patterns of an environment. Second, having

access to the entire graph formed by samples allows us to better prioritize edge exploration and

collision checking based on relatively global patterns, and avoid getting stuck in local regions.

In short, with reasonably relaxed budget of samples taken uniformly from the space, we can

better exploit global patterns to reduce the more expensive collision checking operations instead.

Figure 2.1 shows a typical example of how the trade-off benefits overall planning, and more

thorough comparisons are provided in the experimental results section.

(a) (b)
Figure 2.1: Performance on 7D Kuka arm. Left: Trajectory generated by the proposed GNN-
based approach. Right: NEXT [25] getting stuck at a local region. Both methods were trained
on the same training set.

We design two novel learning-based components that utilize Graph Neural Networks

(GNNs) to accelerate the search for collision-free paths in batch sampling-based motion planning

algorithms. The first component is the GNN Path Explorer, which is trained to find collision-free

paths given the environment configuration and a random geometric graph (RGG) formed by

probing samples. The second component is the GNN Path Smoother, which learns to optimize the

path obtained from the explorer. In both models, we rely on the expressiveness and permutation

invariance of GNNs as well as attention mechanisms to identify geometric patterns in the RGGs

formed by samples, and accelerate combinatorial search.

The proposed learning-based components can accelerate batch sampling-based planning
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algorithms without compromising probabilistic completeness properties. The methods achieve

higher success rate, much lower rate of collision checking, and accelerate the overall planning

compared to state-of-the-art methods. We evaluate the proposed approach in a variety of planning

environments from 2D mazes to 14D dual KUKA arms. Experiments show that our method

significantly reduces collision checking, improves the overall planning efficiency, and scales well

to high-dimensional tasks.

2.2 Related Work

Learning-based Motion Planning. Learning-based approaches typically consider motion plan-

ning as a sequential decision-making problem, which could be naturally tackled with reinforce-

ment learning or imitation learning. With model-based reinforcement learning, DDPG-MP [77]

integrates the known dynamic of robots and trains a policy network. Strudel et al. [159] improves

the obstacle encoding with the position and normal vectors. OracleNet [13] learns via oracle

imitation and encodes the trajectory history by an LSTM [66]. Other than predicting nodes which

are expected to greedily form a trajectory, various approaches have been designed to first learn to

sample vertices, then utilize sampling-based motion planning for further path exploration through

these samples. L2RRT [72] first embeds high-dimensional configuration into low-dimensional

representation, then performs RRT [96] on top of that. Ichter et al. [71] uses conditional VAE to

sample nodes. Zhang et al. [188] learns a rejection sampling distribution. Madaan et al. [112]

encodes the explored tree with an RNN. Motion Planning Networks [133] utilizes the dropout-

based stochastic auto-encoder for biased sampling. NEXT [25] projects the high-dimensional

planning spaces into low-dimensional embedding discrete spaces, and further applies Gated Path

Planning Networks [97] to predict the samples.

Existing learning-based approaches have considered improving collision detection. Fas-

tron [33] and ClearanceNet [22] learn function approximators as a proxy to collision detection,
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which is disparate from our focus on reducing the steps that are needed to the collision checker,

and can be improved further potentially if combined together. Another recent line of work focuses

on learning to explore edges given fixed graph. Value Iteration Networks [161] and Gated Path

Planning Networks [97] apply convolutional neural networks (CNN) on discrete maps, then

predict the policy with a weighted attention sum over neighborhoods. Generalized Value Iteration

Networks [122] and Velickovic et al. [170] extend this approach for nontrivial graph by replacing

CNN with GNN. However, the construction of such graphs requires ground-truth collision status

for every edge on the graph at inference time.

It should be noted that other than sampling-based approaches, trajectory optimization [78,

194, 164, 149, 193], and motion primitives [118, 191] are standard choices for more structured

problems such as for autonomous cars and UAVs, while sampling-based methods are important

for navigating high-dimensional cluttered spaces such as for manipulators and rescue robots.

Graph Neural Networks for Motion Planning. Graph neural networks are permutation invariant

to the orders of nodes on graph, which become a natural choice for learning patterns in graph

problems. They have been successfully applied in robotics applications such as decentralized

control [101]. For sampling-based motion planning, Khan et al. [83] utilizes GNN to identify

critical samples. We focus on the different aspect of collision checking with given random

geometric graphs, and can be combined with existing techniques without affecting probabilistic

completeness. More broadly, GNNs have been used for learning patterns in general graph-

structured problems, e.g. graph-based exploration [32, 150], combinatorial optimization [81, 40,

18], neural algorithm execution [170, 177, 180, 169]. Other than to use GNN for high-dimensional

planning, several works propose to first learn neural metrics, then build explicit graphs upon

the learned metric which is used later to search the path [146, 45, 43, 181]. While sharing

similar interests, our work specifically focuses on how to reduce the collision checking steps for

sampling-based motion planning.

Informed Sampling for Motion Planning. A main focus in motion planning is on developing
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problem-independent heuristic functions for prioritizing the samples or edges to explore. Ap-

proaches include Randomized A* [37], Fast Marching Trees (FMT*) [74], Sampling-based A*

(SBA*) [127], Batch Informed Trees (BIT*) [51]. These methods are orthogonal to our learning-

based approach, which can further exploit the problem distribution and recognize patterns through

offline training to improve efficiency. Recent work in motion planning has made significant

progress in reducing collision checking through batch sampling and incremental search, such as

in BIT* [51] and AIT* [158]. The idea is to start with batches of probing random samples in the

free space, and focus on reducing collision checking to edges that are likely on good paths to the

goal, which also inspires our work.

Lazy Motion Planning. Lazy motion planning also focuses on reducing collision checking,

typically with hand-crafted heuristics or features. LazyPRM and LazySP [16, 58] construct

an RGG first and check the edge lazily only if that edge is on the global shortest path to the

goal. Instead of calculating a complete shortest path, LWA* uses one-step lookahead to prioritize

certain edges [30]. LRA* interleaves between LazySP and LWA*, with a predefined horizon to

lookahead [114]. These approaches use hand-crafted heuristics and do not utilize data-dependent

information from specific tasks. Recently, GLS and StrOLL [113, 15] leverage experiences to

learn to select the edge to check with either fixed graphs or hand-crafted features. Our GNN-based

approach proposes the use of new representations for the learning-based components, with the

goal of directly recognizing patterns using samples from the configuration space.

2.3 Preliminaries

Motion Planning. We focus on motion planning in continuous spaces, where the configuration

space is C⊆Rn. The configuration space includes all degrees of freedom of a robot (e.g. all joints

of a robotic arm) and is different from the workspace where the robot physically resides in, which

is at most 3-dimensional. For planning problem on a graph G = ⟨V,E⟩, we denote the start vertex
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and goal vertex as vs,vg ∈C. A path from vs to vg is a finite set of edges π = {ei : (vi,v′i)}i∈[0,k]

such that v0 = vs, v′k = vg, and v′i = vi+1 for all i∈ [0,k−1]. An environment for a motion planning

problem consists of a set of obstacles Cobs ⊆C and free space C f ree =C \Cobs. Note that Cobs

is the projection of 3D objects in the higher-dimensional configuration space, and typically has

complex geometric structures that can not be efficiently represented. A sample state v ∈C in the

configuration space is free if v∈C f ree, i.e., it is not contained in any obstacle. An edge connecting

two samples is free if e⊆C f ree. Namely, for every point v on the edge e, v ∈C f ree. A path π is

free if all its edges are free. A random geometric graph (RGG) is a r-disc or k-nearest-neighbor

(k-NN) graph G [54, 179], where nodes are randomly sampled from the free space C f ree. In this

paper we consider the RGG as a k-NN graph. Given a random geometric graph G and a pair

of start and goal configuration (vs,vg), the goal of agent is to find a free path π from vs to vg.

Without loss of generality, we consider the cost of a path to be the total length over all edges in it.

Graph Neural Networks and Attention. Let G = ⟨V,E⟩ be a finite graph where each vertex vi

is labeled by data xi ∈ Rn. A graph neural network (GNN) learns the representation hi of node vi

by aggregating the information from its neighbors N (vi). Given fully-connected networks f and

g, a typical GNN encodes the representation h(k+1)
i of the node vi after k aggregation as:

c(k)i =⊕(k)(
{

f (h(k)i ,h(k)j ) | (vi,v j) ∈ E
}
) and h(k+1)

i = g(h(k)i ,c(k)i ) (2.1)

where h(1)i = xi and ⊕ is some permutation-invariant aggregation function on sets, such as max,

mean, or sum. We will also use the attention mechanism when we need to encode a varied

number of obstacles as inputs. Suppose there are n keys each with dimension dq: K ∈Rn×dk , each

key corresponding to a value V ∈ Rn×dv . Given m query vectors Q ∈ Rm×dk , we use a typical

attention function Att(K,Q,V ) for each query as Att(K,Q,V ) = softmax(QKT/
√

dk)V [168].

The function is also permutation-invariant so the order of obstacles does not affect the output.
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2.4 GNN Architecture for Path Exploration and Smoothing

2.4.1 Overall Approach

At a high level, motion planning with batch sampling typically proceeds as follows [51].

We first sample a batch of configurations in the free space, together with the start and goal states,

and form a random graph (RGG) by connecting neighbor states (such as k-NN). A tree is then

built in this graph from the start towards the goal via heuristic search. The tree can only contain

collision-free edges, so each connection requires collision checking. When a path from start to

goal is found, it is stored as a feasible plan, which can be later updated to minimize cost. After

adding all collision-free edges in the current batch in the tree, a new batch will be added and the

tree is further expanded. The algorithm keeps sampling batches and expanding the tree until the

computation budget is reached. It then returns the best path found so far, or failure if none has

been found.

a. New Task

Start

Goal

b. Sample Nodes

Start

Goal

c. Build RGG

Start

Goal

d. Predict Edge Priority

GNN Explorer

G = <V, E>
  Collision Checking

e. Path Exploration f. Smooth Explored Path

GNN Smoother

G = <V, E>

Figure 2.2: Main steps in planning with GNNs, as explained in Section 2.4.1.

We use GNN models to improve two important steps in this planning procedure: path

exploration and path smoothing. The GNN path explorer finds a feasible path π from start to goal
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given a randomly batch-sampled RGG, with the goal of reducing the number of edges that need

to be checked for collision. The GNN path smoother then takes the path found by the explorer

and attempts to produce another feasible path with less cost. In both tasks, the GNN models aim

to recognize patterns and learn solutions to the combinatorial problems and save computation. In

Figure 2.2, we illustrate the main steps for the overall algorithm. First, in (a-c), we generate an

RGG composed of the vertices randomly sampled from the free space without collision checking

on edges. This graph will provide patterns that the GNN explorer later uses to only prioritize

certain edges for collision checking. In (d), the graph is the input to the GNN path explorer,

which predicts the priority of the edges to explore and only the proposed edges are checked for

collision. (e): We iteratively query the path explorer with collision checking to expand a tree in

the free space until the goal vertex is reached, and sample new batches when no path is found in

the current graph. (f): Once a path is provided by the path explorer, it becomes the input (together

with the current RGG) to the GNN path smoother component, which outputs a new path that

reduces path cost via local changes to the vertices in the input path.

2.4.2 GNN Architecture

We write the GNN path explorer as NE and the GNN path smoother as NS. Both models

take in a sampled random geometric graph G = ⟨V,E⟩. For an n-dimensional configuration space,

each vertex vi ∈ Rn+3 contains an n-dimensional configuration component and a 3-dimensional

one-hot label. There are 3 kinds of labels for the explorer: (i) the vertices in the free space, (ii)

the vertices with collision, and (iii) the special goal vertex. There are also 3 kinds of labels for

the smoother: (i) the vertices on the path, (ii) the vertices in the free space, and (iii) the vertices

with collision.

The vertices and the edges are first embedded into a latent space with x ∈ R|V |×dh ,y ∈

R|E|×dh , where dh is the size of the embedding. The embeddings for the GNN explorer and

smoother are different, which will be discussed later in this section. Taking the vertex and edge
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Figure 2.3: GNN architecture shared by the path explorer and the path smoother.
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embedding x,y, the GNN aggregates the local information for each vertex from the neighbors, by

performing the following operation with 2 two-layer MLPs fx and fy:

xi = g
(
xi,max{ fx(x j− xi,x j,xi,yl) | el : (vi,v j) ∈ E}

)
,∀vi ∈V

yl = max(yl, fy(x j− xi,x j,xi)),∀el : (vi,v j) ∈ E
(2.2)

Note that here we use max as the aggregation operator to gather the local geometric information,

due to its empirical robustness to achieve the order invariance [130]. The edge information is

also incorporated by adding yl as the input to fx. The update function g is implemented in two

different ways for the GNN explorer and smoother. Specifically, g equals to the max operator for

the GNN explorer, and g(mi,xi) = fg(mi)+ xi as the residual connection for the GNN smoother,

where fg is a two-layer MLP. We choose max operator for the explorer, due to its inductive bias

to imitate the value iteration, as mentioned by Velickovic et al. [170]. The residual connection is

applied to the smoother, since intuitively the residual provides a direction for the improvement of

each node on the path in the latent space, which fits our purpose to generate a shorter path for the

smoother.

We also note that Equation 4.1 directly updates on the x and y and is a homogeneous

function similar to Tang et. al [162], which allows us to self-iterate x and y over multiple loops

without introducing redundant layers. Both the GNN explorer and smoother leverage this property.

After several iterations, with two MLPs fη, fu, NE outputs the priority η = fη(y) for each edge,

and NS outputs a potentially shorter path π′ = {ui,u′i},ui = fu(xi) for vi ∈ π.

Obstacle Encoding

In the experiment part, we find obstacle encoding is helpful to the GNN explorer, which

can optimize the explored path further with the smoother. We elaborate on the formulation of the

obstacle encoding.

In this work, we consider an obstacle as a 2D or 3D box depending on the workspace,
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denoted as o = (p1, · · · , pn, l1, · · · , ln) ∈ R2n,n ∈ [2,3], where pi and li are the center and length

of the box along the i-th dimension. The environment configuration is written as O ∈ R|{o}|×2n,

where |{o}| is the number of the obstacles. Note that |{o}| is a variable number, since the number

of obstacles can be different for each problem.

Given MLPs f (i)ax , f (i)ay , f (i)Kx
, f (i)Qx

, f (i)Vx
, f (i)Ky

, f (i)Qy
, f (i)Vy

, the obstacle encoding is formulated as:

ax = LN(x+Att( f
K(i)

x
(O), f

Q(i)
x
(x), f

V (i)
x
(O))) and x = LN(ax + f (i)ax (ax))

ay = LN(y+Att( f
K(i)

y
(O), f

Q(i)
y
(y), f

V (i)
y
(O))) and y = LN(ay + f (i)ay (ay))

(2.3)

where LN denotes the layer normalization [4]. This architecture follows the standard

transformer block design [168].

Special design for the GNN path explorer.

The path explorer uses the embedding of the vertices of the form x = hx(v,vg,(v−

vg)
2,v− vg), where hx is a two-layer MLP with batch normalization [73]. Here we append the

L2 distance and the difference to the goal to the vertex embedding, which serve as heuristics for

the GNN to be more informed about which node is more valuable. The yl is simply computed as

yl = hy(v j− vi,v j,vi), where hy is also a two-layer MLP with batch normalization. Optionally,

it is helpful for the explorer to incorporate the configuration of obstacles O = {o} ∈ R|{o}|×2n

as inputs, when embedding the vertices and edges. Since the obstacles of the environment has

variable numbers, we utilize the attention mechanism here to update the x and y, named as

obstacle encoding, as illustrated in Figure 2.3.

As mentioned in the main part, the GNN explorer will update x and y over multiple loops.

During training, we iterate x and y over a random number of loops between 1 and 10. Intuitively,

taking random loops encourages the GNN to converge faster, which also helps propagating the

gradient. During evaluation, the GNN explorer will output x and y after 10 loops. For loops larger
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than 10, significant improvement on performance is not perceived. Finally, with an MLP fη, the

GNN explorer will output η = fη(y), which will be used as the priority to explore corresponding

edges.

Special design for GNN path smoother.

The GNN smoother embeds vertices with x = hx(v), where hx is a two-layer MLP with

batch normalization. The yl is computed as yl = hy(v j− vi,v j,vi), where hy is a two-layer MLP

with batch normalization. Each time x and y are updated by Equation 4.1, the GNN smoother will

output a new smoother path π′ = {(ui,u′i)}i∈[0,k] , where ui = fu(xi),∀vi ∈ π, given an MLP fu.

The u0 and u′k are manually replaced by vs and vg, to satisfy the path constraint. We assume the

π′ has the same number of nodes as π. Since the GNN smoother could gain novel local geometric

information with the changed vertices of the new path, we dynamically update G = ⟨V,E⟩, via

(i) replacing those nodes labeled as path nodes in V by the nodes on new path, (ii) replacing E

by generating a k-NN graph on the updated V . With the updated graph G, we repeat the above

operation. During training, the GNN smoother outputs π′, after a random number of iterations

(between 1 and 10). During evaluation, the GNN smoother outputs π′ after only one loop for each

calling.

2.5 Training the Path Explorer and Smoother

2.5.1 GNN Explorer NE: Training and Inference

The path explorer constructs a tree through sampled states with the hope of reaching

the goal state in a finite number of steps. We initialize the tree T0 with the start state vs as its

root. Every edge eTi in the tree Ti exists only if eTi is in the free space C f ree. Given an RGG

G = ⟨V,E⟩, Our goal is to find a tree containing the goal configuration vg by adding edges from

E to the tree, with as few collision checks as possible. We write the edge on frontier of the tree as
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E f (T ) = {(vi,v′i) | vi ∈VT ,v′i ̸∈VT }. We denote the set of edges with unknown collision status

at time step i as Ei.

Training procedures. Each training problem consists of a set of obstacles O, start vertex vs,

goal vertex vg, we sample a k-NN graph G = ⟨V,E⟩, where V is the random vertices sampled

from the free space combined with {vs,vg}. The goal is to train NE to predict exploration priority

η ∈ R|E|.

A straightforward way for supervision is to use the Dijkstra’s algorithm to compute the

shortest feasible path from vs to vg, and maximize the corresponding values of η at the edges of

this path, via cross entropy loss or Bayesian ranking [139]. However, it does not provide useful

guidance when the search tree deviates from the ideal optimal path at inference time. Instead, we

first explore the graph using η with i steps, which forms a tree Ti, where i is a random number.

The oracle provides the shortest feasible path πN in this tree and connects one of the nodes on

Ti to the goal vertex vg. We formulate this optimal path as πN = {eNi : (vNi,v
′
Ni
)}i∈[0,k], where

vN0 ∈VTi,v
′
Nk

= vg. We train the explorer to imitate this oracle. Namely, the explorer will directly

choose eN0 ∈ πN as the next edge to explore, among all possible edges on the frontier of Ti, i.e.

Ei∩E f (Ti). We maximize the ηN0 among the values of {ηi | ei ∈ Ei∩E f (Ti)} using the following

cross entropy loss:

LNE
=− logγN0 , where γk =

eηk

∑e j∈Ei∩E f (Ti) eη j
,∀ek ∈ Ei∩E f (Ti) (2.4)

Inference procedures. Given the GNN NE , the current explored tree Ti at step i, the RGG G =

⟨V,E⟩ including vs and vg, environment configuration O, GNN path explorer aims to maximize

the probability of generating a feasible path by adding ei from Ei to tree Ti as:

ei = argmax
ek∈Ei∩E f (Ti)

NE(ηk |V,E,O) (2.5)
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where ηk is the output of NE for the edge ek. After ei is proposed by GNN using Equation 2.5,

we check the collision of ei. If ei is not in collision with the obstacles, we add the edge ei to the

tree Ti, and remove ei from Ei, i.e., ETi+1 = ETi ∪{ei}, and Ei+1 = Ei \{ei}. If ei is in collision

with obstacles, we query the path explorer for the next proposed edge using Equation 2.5, where

Ei is updated as Ei = Ei \{ei}. The loop terminates when we find a collision-free edge, or when

Ei ∩E f (Ti) = /0. When the latter happens, we re-sample another batch of samples, add new

samples to vertices V , re-construct k-NN graph G, re-compute η, and continue to explore the path

on this new graph with the explored nodes and edges.

The exploration GNN only proposes an ordering on the candidate edges, and all possible

edges may still be collision checked in the worst case. Thus, if there exists any complete path in

the RGG, the algorithm always finds it. Therefore, the proposed learning-based component does

not affect the probabilistic completeness of sampling-based planning algorithms [29].

2.5.2 GNN Path Smoother NS: Training and Inference

The GNN NS for path smoothing takes an RGG and a path π proposed by the explorer,

and aims to produce a shorter path π′. Specifically, the input is a graph G = ⟨V,E⟩, where

V = Vπ ∪Vf ∪Vc, E = Eπ ∪E f c. Here, Vf and Vc are reused as the same vertices in the GNN

explorer, without introducing extra sampling complexity. Eπ is composed of those pairs of the

adjacent vertices on π, and E f c connects each vertex in Vπ to their k-nearest neighbor in Vf ∪Vc.

Intuitively, aggregating information from Vf ∪Vc can allow GNN to identify local regions that

provide promising improvement on the current path, and avoid those that may yield potential

collision.

Training procedures. We train the GNN path smoother NS by imitating a smoothing oracle

S similar to the approach of gradient-informed path smoothing proposed by Heiden et al. [62].

To prepare the training set, we iteratively perform the following two operations on each training
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sample path. Given a feasible path π predicted by NE , the smoothing oracle first tries to move the

nodes on the path π with perturbation within range ε. If the new path πM is feasible and has cost

less than π, then S will continue to smooth on πM. Otherwise, S will continue smoothing on π

via random perturbation. After several perturbation trials, the oracle further attempts to connect

pairs of nonadjacent nodes directly by a line segment. If such a segment is free of collision, then

the original intermediate nodes will be moved on this linear segment.

After S reaches maximum iteration, the oracle will return the smoothed path πM =

{wi,w′i}i∈[0,k]. To generate training data, we first run our trained GNN explorer for each training

problem to get the initial path π. Then the oracle path πM and the predicted path π′ are computed,

and finally the GNN is trained via minimizing the MSE loss LNS
= 1

k ∑i∈[1,k] ∥NS (ui |V,E)−wi∥2
2.

Figure 2.4: GNN path smoother on the 2D maze problem. It learns to improve the explored
path and achieves lower cost.

Inference procedures. The GNN NS for path smoothing takes an explored path π :

{(vi,v′i)}i∈[0,k], a sampled graph G, and outputs a potentially shorter path π′ : {(ui,u′i)}i∈[0,k]

which has the same number of edges as π. It is not always guaranteed that π′ is collision-free.

However, such π′ still indicates directions for shortening the path, so we can improve π towards
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π′ in an incremental way. The GNN smoother will try to move every node vi towards the target

position ui, with a small step size ε. For each time that all the vertices are moved with a small

step, we check whether each edge still holds collision-free. If not, then the vertices on the edge

will undo the movement. Otherwise, the new configuration of the vertex will replace its old

configuration on π. This operation will be iterated over several times, until the maximum iteration

is reached, or no edges on π can be moved further. We can then repeat the process by feeding the

updated π back to the GNN NS for further improvement. The intuition here is that there might

still be chances to improve upon the updated π, by aggregating new information from its changed

neighborhoods. This has shown empirical advantage in our experiments.

Maze (2D) Snake (7D)UR5 (6D)

Kuka (7D) Extended Kuka (13D) Dual Kuka (14D)
Figure 2.5: Demonstrations of all our environments.

2.6 Algorithms

Here we describe the full algorithms for the GNN path explorer and the GNN path

smoother. The GNN path explorer is described in Algorithm 1. The GNN path smoother is

described in Algorithm 2. The two algorithms are summarized in Figure 2.2.
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The smoothing oracle that we use is similar to the approach of gradient-informed path

smoothing proposed by [62]. Since the gradient in the configuration space is complex, we replace

the gradient smoother by a random perturbation smoother. The oracle smoother jointly calls

the random perturbation smoother and a segment smoother over multiple iterations. These two

smoothers are described in Algorithm 3 and 4.

Algorithm 1 GNNExplorer
Input: obstacles O, start vs, goal vg, batch size n, node limit Tmax
Sample n nodes from C f ree to Vf
Sample n nodes from Cobs to Vc
Initialize G = {V : {vs,vg}∪Vf ∪Vc,E : k-NN(Vf )∪k-NN(V )}
Initialize i = 0,E0 = k-NN(Vf ),VT0 = {vs},ET0 = /0

η = NE(V,E,O)
repeat

select ei with η

Ei← Ei \{ei}
if ei : (vi,v′i)⊆C f ree then

VTi+1 ←VTi ∪{v′i}
ETi+1 ← ETi ∪{ei}
Ei+1← Ei
E f (Ti+1)←{e j : (v j,v′j) ∈ Ei+1 | v j ∈VTi+1 ,v

′
j ̸∈VTi+1}

i← i+1
if ||v′i− vg||22 ≤ δ then

π← path from vs to vg on tree Ti
return π

if Ei∩E f (Ti) == /0 then
Sample n nodes from C f ree, add to Vf
Sample n nodes from Cobs, add to Vc
V ←{vs,vg}∪Vf ∪Vc
Ei← k-NN(Vf )\ (E \Ei)
E← k-NN(Vf )∪k-NN(V )
η = NE(V,E,O)

until |Vf |> Tmax
return /0
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Algorithm 2 GNNSmoother

Input: step size ε, stop difference δ, outer loop L, inner loop K
Input: explored path π : (vi,v′i)i∈[0,k], free samples Vf , collided samples Vc
for n ∈ {1 . . .L} do

G←{V : {Vπ,Vf ,Vc},E : k-NN(Vπ,V )∪Eπ}
π′ : (ui,u′i)i∈[0,k] = NS(V,E)
for m ∈ {1 . . .K} do

d← 0
for ui ∈Vπ′, i ∈ [1,k] do

wi← steer vi toward ui within step ε

if ei−1 : (vi−1,wi)⊆C f ree then
Replace vi ∈ π with wi
d← d + ||wi−ui||22

if d ≤ δ then
break

return π

Algorithm 3 RandomSmoother

Input: path π : (vi,v′i)i∈[0,k], perturbation range ε, iteration LR
for n ∈ {1 . . .LR} do

pick a random node vi ∈ π,1≤ i≤ k
ui← vi + random(−ε,ε)
if (vi−1,ui),(ui,vi+1) ⊆ C f ree and Cost[(vi−1,ui),(ui,vi+1)] < Cost[(vi−1,vi),(vi,vi+1)]
then

replace vi with ui
return π

Algorithm 4 SegmentSmoother

Input: perturbed path π : (vi,v′i)i∈[0,k] from Algorithm 3
critical = [v0,v′k]
for i ∈ [1,k] do

if (vi−1,v′i) ̸⊆C f ree then
append vi to critical

πM = /0

for adjacent pair vi,v j ∈ critical do
V ←{vp | vp ∈ π, i≤ p≤ j}
E←{(va,vb) | va,vb ∈V,(va,vb)⊆C f ree}
πi j← the shortest path from vi to v j via Dijkstra(V,E)
πM← πM ∪πi j

return πM
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2.7 Experiments

2.7.1 Overall Performance

We compare our methods with the sampling-based planning baseline RRT* [79], the state-

of-the-art batch-sampling based method BIT* [51], the lazy motion planning method LazySP [58],

and the state-of-the-art learning-based method NEXT [25]. NEXT has been shown in [25] to

outperform competing learning-based approaches. We conduct the experiment on 6 different

environments, which are described in details as follows:

Maze The maze contains a 2D point robot. The datasets for training set and the test set for

"Easy2D" is at https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/

algorithm [25]. To generate the "Hard2D", we utilize the script provided by https://github.

com/RLAgent/gated-path-planning-networks [97]. The Hard mazes are generated by con-

trolling the obstacle density not less than 46%, and the distance from start to goal not less than

1.

UR5 The UR5 contains a UR5 robot arm [187], which has 6 degrees of freedom. There are

two sets of boxes, poles and pads, which are set to generate in two different size range. The poles

and pads are randomly generated in the workspace for each problem.

Snake The Snake environment contains a snake robot with 5 sticks, with another 2 degrees for

the end position, which means 7D in total. The mazes are the same set of 2D mazes from NEXT.

Kuka, Extended Kuka The Kuka environment contains a 7DoF Kuka arm with fixed base

position. The extended Kuka environment contains an extended 13DoF kuka arm. The boxes are

randomly generated in the workspace for each problem.
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Dual Kuka The environment contains two 7DoF KUKA arms, with 14DoF in total. Each arm

need to reach the goal configuration, while required to not only avoid collision with the obstacles

but also the other arm.

All the environments except the mazes are all implemented by PyBullet [31] with the

MIT license.

For each environment, we randomly generate 2000 problems for training and 1000

problems for testing. Each problem contains a different set of random obstacles, and a pair

of feasible vs and vg. We run all experiments over 4 random seeds. The averaged results are

illustrated in Figure 2.6. For the 2D environment, we directly take the training set provided by

NEXT to train our GNN. We use two test sets for the 2D environment: “Easy2D" is the original

test set used for evaluating NEXT in the original paper [25], and “Hard2D" is a new set of tests

we generated by requiring the distance between the start and goal to be longer than the easy

environments. The goal is to test whether the learned models can generalize to harder problems

without changing the training set.
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Figure 2.6: Comparison of performances on all environments from 2D to 14D, averaged over 4
random seeds. From left to right: (a) Success rate. (b) Collision checks. (c) Path cost. (d) Total
planning time.

Success rate. As shown in Figure 2.6 (a), our method finds complete paths at 100.0% problems

on both 2D Easy and 2D Hard, and at 97.18%, 99.85%, 99.20%, 99.15%, and 99.15% problems

from UR5 to 14D, which is comparable to handcrafted heuristics used in BIT* (100.0%, 100.0%,

99.25%, 99.85%, 99.65%, 99.92%, 99.82% on each environment). The learning-based planner

NEXT performs well on easy 2D problems (99.37% success rate), but drops slightly to 97.10%
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on harder 2D problems, and 36.80%, 71.80%, 87.9%, 60.52%, 66.57% on environments in higher

dimensions.

Collision checking. In Figure 2.6 (b), we see significant reduction of collision checking using the

proposed approach, in comparison to other approaches especially in high-dimensional problems.

The average number of collision checks by the GNN explorer is 336.3, 715.7, 2474.0, 1602.2,

350.5, 521.7, 487.0 on the environments, whereas BIT* needs 112%, 175%, 164%, 101%, 557%,

226%, 263% times as many collision checks as our method requires on each environments.

LazySP needs 105%, 114%, 111%, 100%, 105%, 105%, 124% times as many collision checks as

GNN requires on each environments. NEXT requires 270.23 checks on Easy2D and increases to

1206.1 on Hard2D. On the 14D environment, our method uses 17.4% of the collision checks as

what NEXT requires.

Path cost. We show the average path cost over all problems where all algorithms successfully

found complete paths. With the smoother and obstacle encoding, our GNN approach provides the

best results from UR5 to 14D, and generates comparable results for the 2D Easy and 2D Hard,

where NEXT is 1.02, 1.71, and GNN is 1.18, 2.05. We find that although the GNN explorer does

not yield shorter path with obstacle encoding, these explored paths can be improved further with

the smoother. The reason may be that with additional obstacle encoding, the GNN explorer tends

to explore edges with less probability of collision and provides more space for the smoother to

improve the paths.

Planning time. A common concern about learning-based methods is that their running cost due

to the frequent calling of a large neural network model at inference time (as seen for the NEXT

curve). We see in Figure2.6(d) that the wall clock time of using the GNN models is comparable

to the standard heuristic-based LazySP, BIT* and RRT*, when all algorithms can find paths. The

main reason is that the reduction in collision checking significantly reduces the overall time. We

believe the GNNs can be further optimized to achieve faster inference as well.

In summary, experimental results show that the GNN-based approaches significantly
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reduce collision checking while maintaining high success rate, low path cost, and fast overall

planning. The performance scales well from low-dimensional to high-dimensional problems.

2.7.2 Tables for Overall Performance

Here we list the overall performances of all the methods on all the environments, including

the averaged value with the standard deviation.

Table 2.1: Success rate. Our algorithm benefits from the probabilistic complete property from
the RGG, which samples uniformly from free space,

Easy2D Hard2D UR5 Snake Kuka7D 13D 14D
GNN 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

GNN + Smoother 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00
GNN w/o OE 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

GNN w/o OE + Smoother 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00
BIT* 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

NEXT 0.99±0.00 0.97±0.00 0.37±0.00 0.72±0.01 0.88±0.01 0.61±0.01 0.67±0.00
RRT* 0.87±0.00 0.54±0.01 0.39±0.00 0.69±0.00 0.83±0.00 0.67±0.01 0.70±0.00

LazySP 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

Table 2.2: Collision check. GNN performs the best in most high dimensional problems.
Easy2D Hard2D UR5 Snake Kuka7D 13D 14D

GNN 336.25±3.71 715.65±6.76 2474.03±40.35 1602.16±22.66 350.52±8.29 521.70±44.58 486.95±12.99
GNN + Smoother 496.79±4.68 1029.72±8.33 5182.02±191.40 2813.75±15.01 477.32±9.06 830.95±49.06 791.78±14.27

GNN w/o OE 332.30±4.00 703.72±5.78 2556.63±49.91 1605.73±24.00 353.89±7.47 588.65±51.04 547.16±37.61
GNN w/o OE + Smoother 565.38±6.37 1126.02±9.91 3715.40±132.41 2757.88±62.64 466.06±6.70 820.70±55.97 789.25±36.54

BIT* 478.88±10.95 1253.56±15.38 4055.73±286.93 1612.22±78.85 1951.81±424.82 1175.42±287.68 1276.95±230.88
NEXT 270.23±13.92 1206.09±18.62 6461.13±14.31 4788.84±20.60 2488.49±33.76 4958.80±99.51 4559.99±21.92
RRT* 1785.46±27.93 4080.07±32.69 3135.36±4.03 3352.45±15.68 1698.04±28.34 3004.45±55.36 2796.99±13.89

LazySP 351.80±2.47 801.21±6.74 2742.12±113.08 1595.74±48.15 369.36±19.42 546.64±29.40 604.64±38.84

Table 2.3: Path cost. With the GNN smoother, our path cost is the lowest from UR5 to 14D.
Easy2D Hard2D UR5 Snake Kuka7D 13D 14D

GNN 1.34±0.01 2.39±0.02 4.54±0.17 4.33±0.05 9.15±0.11 15.91±0.15 15.26±0.21
GNN + Smoother 1.18±0.01 2.05±0.01 4.12±0.12 3.91±0.01 6.14±0.02 8.98±0.06 8.86±0.08

GNN w/o OE 1.36±0.01 2.41±0.03 4.50±0.15 4.35±0.03 9.00±0.04 15.52±0.06 15.34±0.14
GNN w/o OE + Smoother 1.46±0.01 2.45±0.03 4.45±0.15 4.43±0.02 8.18±0.06 12.91±0.13 12.59±0.03

BIT* 1.11±0.00 2.00±0.02 4.33±0.09 3.95±0.02 6.57±0.04 9.41±0.07 9.54±0.04
NEXT 1.02±0.00 1.71±0.01 4.62±0.05 5.45±0.04 7.74±0.06 10.17±0.07 10.66±0.12
RRT* 1.14±0.01 1.79±0.01 4.66±0.03 4.69±0.05 6.95±0.02 9.81±0.04 10.52±0.03

LazySP 1.20±0.01 2.11±0.01 4.30±0.06 4.18±0.03 8.16±0.05 13.51±0.06 13.54±0.06
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Table 2.4: Total running time. GNN requires low time cost due to its optimization on collision
checks.

Easy2D Hard2D UR5 Snake Kuka7D 13D 14D
GNN 35.07±0.78 80.57±1.16 290.41±3.20 218.83±3.41 56.77±1.89 102.67±10.48 84.25±3.16

GNN + Smoother 48.71±0.79 99.40±1.18 481.31±13.31 312.30±2.64 72.32±1.93 143.71±11.00 119.68±2.95
GNN w/o OE 35.43±0.66 80.19±1.04 298.18±4.25 221.26±2.29 57.62±1.87 116.69±11.75 95.19±8.36

GNN w/o OE + Smoother 51.59±0.76 101.40±1.17 386.30±9.97 310.42±4.39 72.39±1.85 149.86±12.19 125.09±8.25
BIT* 47.69±3.43 146.55±2.88 387.44±27.34 183.84±6.69 199.19±42.31 183.54±40.22 167.81±21.43

NEXT 166.46±4.81 499.65±4.40 7150.17±690.44 4355.78±28.44 1837.28±40.04 4750.26±88.29 4450.67±278.09
RRT* 77.20±1.03 166.06±1.35 396.86±0.45 425.87±2.46 166.98±2.43 465.80±8.58 392.57±2.74

LazySP 83.65±1.97 287.30±11.93 905.22±97.21 236.79±31.76 339.97±61.63 301.63±67.92 465.30±93.14

Figure 2.7: We test the generalization capability of GNN-based approaches and NEXT by
constructing pairs of problems that have small but important difference in connectivity. The
GNN models find paths on both environments quickly, while NEXT gets stuck in hard instances
because of the lack of access to the graph structure provided by probing samples. The explored
vertices of GNN on UR5 environment are colored in blue, and the edges on the path are colored
in red.

2.7.3 Generalizability of Collision Reduction

A major challenge of learning-based approaches for planning is that small changes of

the geometry of the environment can lead to abrupt change in the solutions, and thus lead the

difficulty of generalization. In Figure 2.7, we provide evidence that the GNN approach can

alleviate this problem because of its access to the graph structures formed by samples uniformly

taken from the space. In the 2D maze environment, the top one is easy while the bottom one

is much harder, although the difference is just whether a narrow corridor is present to the left

of the start state. For the UR5 with pads and poles, to solve the hard one, the robot arm needs

to first rotate itself around the z-axis to bypass the small pads, and then rotate it back to fit the
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goal configuration. These problems are especially challenging for generalizing learned results to

unseen environments.

We observe that the GNN-based components can handle the transition from the easy to

hard problems consistently. In both environments, the GNN components find paths quickly, with

9 and 236 edges explored for 2D maze, and with 1 and 256 edges explored for UR5. In contrast,

the NEXT model trained on the same training sets, can quickly find a path in the easy problem,

but gets stuck in the hard one. Since the two problems are close to each other in the input space

for NEXT, it is not surprising to see this difficulty of generalization. In fact, the only case where

NEXT can eventually find a path on 2D Maze after more than 6K edge exploration is when the

algorithm delegates 10% operations to standard RRT*. Without delegating to RRT*, NEXT gets

stuck in local regions after 10K exploration steps on 2D and 1K steps on UR5.

2.7.4 Further Comparison with Lazy Motion Planning

Figure 2.8: Comparison of performances with LazySP across different batch samples. The final
path is colored red, and the other explored edges are colored green. From left to rightm we
show examples of the search results with the batch size being 100, 200, and 300, respectively.
We show obstacles of different thickness because the in-collision samples are also part of the
inputs of the GNN planner, which can provide useful information about the topology of the
environment.

We compare GNN with the lazy motion planning method LazySP [58]. Lazy approaches

prioritize the collision checking on edges that are part of the shortest paths in the RGG, which

is a strategy that can often see good performance especially on randomly generated graphs.

However, as lazy planning uses the fixed heuristic of prioritizing certain paths, it is easy to come

up with environments where this heuristic becomes misleading. Our proposed learning-based
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approach, instead, uses GNN to discover patterns from the training set, and can thus be viewed as

a data-dependent way of forming heuristics for reducing collision checking.

Consider U-shaped obstacles, with the start state close to the bottom of the U-shape, as

shown in Figure 2.8. It is a standard environment that is particularly hard for the standard lazy

approach, which prioritize the edges that directly connect the start and goal states, as they are

close in the RGG that does not consider obstacles. Indeed, the lazy approach needs to check

most of the edges that cross the obstacles before the path for getting out of the U-shape can

be found. We train the GNN-based model on these environments and observe clear benefits

of learning-based components in avoiding this issue. Figure 2.8 shows the difference between

the two approaches in several examples of the 2D environment using different sizes of sample

batches, where the GNN-based approach can typically save 50% of collision checking on edges

compared to the lazy approach.

2.7.5 Ablation Study: Probing Samples
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Figure 2.9: Comparison of performances for different probing samples from 2D to 14D
problems.

In the following subsections, we perform ablation studies of varying different parameters

in our approach. The first study is that we use RGGs with different number of vertices from the

free space, using 100, 200, 300, 500, 1000 samples, as illustrated in Figure 2.9. The success

rate increases when there are more probing samples, which is consistent with the resolution-

complete property of sampling-based planning. The path cost stays nearly the same for all
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settings, indicating robustness of the smoother models. The collision checks and planning time

grows linearly with the probing samples. The reason is that the number of edges of k-NN RGG

increments linearly with vertices, the input to the GNN grows linearly, thus the computation cost

increases linearly on both CPU and GPU.

2.7.6 Ablation Study: Varying Training Set Size for Explorer
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Figure 2.10: Ablation study on the different training set size. All the performances become
stable at relatively few training set size (around 40 problems, 2% of the original training set).

We conduct further experiments to analyze the effect of the training set size. We train the

GNN path explorer with the 0 (0%), 10 (0.5%), 40 (2%), 200 (10%), 400 (20%), 800 (40%), 1200

(60%), 1600 (80%), 2000 (100%) problems in this new training set. The performance of collision

checks, path costs, and total time on the testing problems are demonstrated in Figure 2.10.

As shown, the overall performance of the GNN explorer is robust, even with 2% problems

of the original training set. There are two reasons here: (i) The GNN models we propose are

relatively lightweight in terms of the parameter numbers, which means that it is suffice to train

it with small amount of data. (ii) Our GNN model does not depend on the global feature of

the whole graph, as it only aggregates the information from local neighborhoods. Though each

problem yields a different graph in terms of global characteristic, they can share similar local

geometric patterns, which is beneficial for the efficiency of learning GNN models.
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2.7.7 Ablation Study: Feature Choices

Easy2D Hard2D 7D 14D

0

5

10

15

20 Path Cost

Easy2D Hard2D 7D 14D

0

100

200

300

400

500

600

700

800

900

Collision Check

Easy2D
0

100

200

300

400

500

600

700

800

900 Without Heuristic

With Heuristic

Collision Check

Figure 2.11: Comparison of performance of GNN explorers with vertex embedding x as hx(v,vg)
and hx(v,vg,(v− vg)

2,v− vg) respectively. Results show that the GNN explorer with heuristics
perform slightly better for high-dimensional problems.

In this experiment, we replace the vertex embedding x = hx(v,vg,(v− vg)
2,v− vg) by

x = hx(v,vg), which removes the L2 distance heuristic on features. We retrain the new GNN with

the same training set, and compare to the original architecture on 4 environments. As shown in

Figure 2.11, the performances of two GNNs are close to each other from 2D to 7D environments

(0.5%, 0.6%, 1.0% in terms of collision checking), and the original GNN is slightly better on

14D environment (6.8% in terms of collision checking, 0.9% in terms of path cost). The L2

distance heuristic is helpful in high dimensions, but does not have much effect, due to the complex

geometry of the C-space.

2.7.8 Ablation Study: GNN Smoother Versus Oracle Smoother

In this experiment, we replace the learned GNN smoother by the oracle smoother, which

is the expert that GNN smoother imitates. We compare these two smoothers, given the same

path explored by the GNN explorer on the test problems. As shown in Figure 2.12, our smoother

requires much fewer collision checks and time, while maintaining comparable improvement on the

explored path, which is contributed by the incremental way of smoothing, and the generalizablity

of the GNN. More specifically, the GNN smoother requires 3.9%, 8.8%, 10.5%, 8.0%, 1.9%,
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Figure 2.12: Comparison of performance between our GNN smoother and the oracle to trained
on. Our GNN smoother learns to smooth the path with comparable improvement as the oracle,
and also requires fewer collision checking steps and less total time.

3.7%, 3.5% as many collision checks as the oracle on each environment, while maintaining

80.7%, 86.9%, 101.5%, 93.2%, 94.9%, 103.2%, 109.9% as much improvement as the oracle for

each environment.

2.7.9 Ablation Study: Varying the k in k-NN

As suggested in [179], we set the k in the k-NN graph as proportional to the logarithm

of the number of vertices, which is formulated as ⌈k0 · log |V f |
log100⌉. Here we test different k0 for the

k-NN, choosing among {1,2,4,10,20,40}, as demonstrated in Figure 2.13.
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Figure 2.13: Ablation study on different k0 for k-NN. Performances are best at k0 ∈ [10,20].

It is not surprising for the success rate to increase when k increases, since there are more

edges in the graph, which increases the possibility to find a feasible path. The path cost also

decreases with increasing k, since on average there might be fewer segments on a path. The

collision checks and total running time first decrease then increase, since larger k brings higher
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possibility to find a feasible path with fewer intermediate vertices, but also brings more edges to

check on the frontier.

2.7.10 Ablation Study: Varying the Batch Size
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Figure 2.14: Ablation study on different batch size for batch sampling. Larger batches tend to
yield lower success rate and path costs, while requiring more collision checks and running time.

In this experiment, we inspect the effect of the batch size. While constraining the

maximum sampling number from free space to be 1000, we set the batch sampling size among

{50,100,200,250,500,1000}. We see that the success rate drops when the batch size increases,

since the GNN explorer is given fewer opportunities to fail and re-sample. The collision checks

grows with the batch size, because the graphs would contain more edges with larger batch size on

average. The path cost is lower with larger batches, similar to the effect of higher k, due to higher

possibility to find a feasible path with fewer intermediate vertices. The total time raises when the

batch size goes larger, because larger batches brings denser graphs, which enlarges both CPU and

GPU costs.

2.8 Conclusion

We presented a new learning-based approach to reducing collision checking in sampling-

based motion planning. We train graph neural network (GNN) models to perform path exploration
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and path smoothing given the random geometric graphs (RGGs) generated from batch sampling.

We rely on the ability of GNN for capturing important geometric patterns in graphs. The learned

components can significantly reduce collision checking and improve overall planning efficiency

in complex and high-dimensional motion planning environments.
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Chapter 3

Accelerating Multi-Agent Planning Using

Graph Transformers with Bounded

Suboptimality

Conflict-Based Search is one of the most popular methods for multi-agent path finding.

Though it is complete and optimal, it does not scale well. Recent works have been proposed to

accelerate it by introducing various heuristics. However, whether these heuristics can apply to

non-grid-based problem settings while maintaining their effectiveness remains an open question.

In this work, we find that the answer is prone to be no. To this end, we propose a learning-based

component, i.e., the Graph Transformer, as a heuristic function to accelerate the planning. The

proposed method is provably complete and bounded-suboptimal with any desired factor. We

conduct extensive experiments on two environments with dense graphs. Results show that the

proposed Graph Transformer can be trained in problem instances with relatively few agents

and generalizes well to a larger number of agents, while achieving better performance than

state-of-the-art methods.
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Figure 3.1: Left: Examples of our graph-based MAPF instances. To construct the graph, we
sample vertices randomly from the free space and connect them with collision-free edges. Right:
Problem instances that our approach solves while other baselines fail. Different colors represent
the trajectories of different agents. Vertices in the same trajectory have deeper colors if their
respective time steps are later.

3.1 Introduction

Multi-Agent Path Finding (MAPF) is central to many multi-agent problems. The solution

to MAPF is to generate collision-free paths guiding agents from their start positions to designated

goal positions. MAPF has practical applications in item retrieval in warehouses [44], mobility-on-

demand services [129], surveillance [56] and search and rescue [92].

Conflict-Based Search (CBS) is one of the most popular planners for MAPF [151]. It

is provably complete and optimal. However, solving MAPF optimally is NP-hard [6, 184].

Consequently, CBS suffers from scalability, as the search space grows exponentially with the

number of agents. Bounded-suboptimal algorithms [9, 100] guarantee a solution that is no larger

than a given constant factor over the optimal solution cost. Though these methods often run

faster than CBS for grid-based MAPF instances, their effectiveness remains an open question for

non-grid-based problem settings, wherein agents can move in an arbitrary continuous domain.

In addition, since most of these heuristics rely heavily on collision checking for conflicts, their
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computational costs may become considerable when the graphs are dense.

Recently, learning-based methods have shown their potential in solving MAPF tasks

efficiently [101, 70, 69, 145], which offload the online computational burden into an offline

learning procedure. Yet, we find nearly none of them address graph-based MAPF settings.

Therefore, the main interest of this work is to explore whether and how a learning-based method

could accelerate MAPF planners in non-grid-based settings, especially for dense graphs.

Contributions. We propose to use a Graph Transformer as a heuristic function to

accelerate Conflict-Based Search (CBS) in a non-grid setting. Similar to previous works [69], by

introducing focal search to CBS, our framework guarantees both the completeness and bounded-

suboptimality of the solution. Our contributions are as follows:

• We propose a novel architecture, i.e., the Graph Transformer, which leverages the underlying

structure of the MAPF problem. The proposed architecture has several desired properties,

e.g., dealing with an arbitrary number of agents, making it a natural fit for the MAPF

problem. To our knowledge, our work is one of the first works to introduce a learning

component to MAPF problems under non-grid-based problem settings.

• We design a novel training objective, i.e., Contrastive Loss, to learn a heuristic that ranks

the search nodes. Unlike [69], our loss can be directly optimized without introducing an

upper bound, which is suitable for deep learning.

• We demonstrate the generalizability of our model by training with relatively few agents

and testing in unseen instances with larger agent numbers. Results show that our approach

can accelerate CBS significantly while ECBS, using handcrafted heuristics [9], fails.

Related Work. Leading MAPF planners mainly include three types: optimal planners,

bounded-suboptimal planners, and unbounded-suboptimal planners. Optimal planners include

BCP solvers [93, 94], and Conflict-Based Search (CBS) [151], followed by its variants, e.g.,

CBSH [47] and CBSH2 [99]. Bounded-suboptimal planners are another line of work with
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better scalability while guaranteeing completeness and bounded-suboptimality. Representative

works include EPEA* [46], A* with operator decomposition [156], M* [171], ECBS [9], and

EECBS [100]. Last but not least, there are unbounded-suboptimal planners that aim to ag-

gressively accelerate the planning. Examples include Prioritized Planning [165], ORCA [166],

Push-and-Swap [108], and Parallel Push-and-Swap [143]. These works can find solutions fast,

but do not guarantee the solution quality [21, 167].

Recently, learning-based methods were introduced to solve multi-agent tasks efficiently,

using imitation learning [101, 102] and reinforcement learning [145, 173, 183]. These end-to-end

methods are often good at memorizing the patterns that are seen during training, which could save

significant online computation when deployed to similar tasks. However, it is hard to ensure their

completeness. To this end, several works have been proposed to train a learning-based heuristic

and use it to guide the tree search [82, 189, 154, 182]. To accelerate CBS and ECBS, Huang et

al. [70, 69] use Supported Vector Machines (SVM) to bias the search, and train it via imitation

learning. Our work is not only one of the first works that apply ML to non-grid-based problem

settings, but also one of the first works that apply deep learning to MAPF with completeness and

bounded-optimality guarantees.

3.2 Problem Formulation

We study Multi-Agent Path Finding (MAPF) in the 2D continuous space C ⊆ R2. The

configuration space C consists of a set of obstacles Cobs ⊆ C and free space C f ree : C \Cobs.

Note that Cobs could be different from what appears in the workspace, since it also considers the

geometric shape of the agent, which may not solely be a point mass.

A random geometric graph G = ⟨V,E⟩ is sampled from the space. Every sampled vertex

v ∈V is collision-free, i.e., v ∈ C f ree. A directed edge e ∈ E : (vi→ v j) connects vi to v j, if (i) v j

is one of the neighbors of vi, and (ii) the edge is collision-free, i.e., e⊆ C f ree. The neighbor set
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can be defined as the r-radius or k-nearest neighbors.

Suppose there are M agents on this graph G. Each agent i occupies a region R (q)⊆ C ,

associated with a vertex q ∈V . We assign a start vertex si and a goal vertex gi to each agent i. We

denote the path of agent i as σi : {vt
i}t∈[1···Ti], where Ti ∈ Z>0, and agent i is on vertex vt

i at time

step t. We denote et
i as the edge (vt

i→ vt+1
i ) that traverses from vt

i to vt+1
i in 1 timestep.

Problem Description. We consider a tuple (G,S ,G ,C ,R ) as a problem instance of MAPF,

where S : {si}i∈[1···M] and G : {gi}i∈[1···M] are the start and goal vertices. A conflict-free solution

{σi}i∈[1···M], should satisfy the following objectives, given arbitrary time t and pair of agents

i, j [123]:

(Endpoint) v0
i = si∧ vTi

i = gi

(Obstacle) vt
i ∈ C f ree∧ et

i ⊆ C f ree

(Inter-agent) R (qi)∩R (q j) = /0,∀qi ∈ et
i,q j ∈ et

j

Note: If t ≥ Ti, we assume the corresponding vt
i is equal to vTi

i . This means that the agent will

stay at the goal starting from time step vTi
i .

Solution Quality. We assume each edge requires 1 time step to traverse. The quality of the

solution is measured by the sum of travel times (flowtime): ∑i∈[1···M]Ti.

3.3 Background: Conflict-Based Search with Biased Heuris-

tics

In this section, we first introduce Conflict-Based Search (CBS), an optimal multi-agent

planner [151]. Then we introduce focal search [126, 53], which incorporates the biased heuris-

tic into the CBS framework, while preserving the guarantees of bounded-suboptimality and

completeness [9].
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3.3.1 Conflict-Based Search

Conflict-Based Search (CBS) is an optimal bi-level tree search algorithm of MAPF. The

high-level planner aims to solve inter-agent conflicts, while the low-level planner aims to generate

optimal individual paths. Here we denote an inter-agent conflict as (i, j, t,vt−1
i ,vt−1

j ,vt
i,v

t
j), which

implies two edges, (vt−1
i → vt

i) and (vt−1
j → vt

j), dissatisfy the inter-agent objective mentioned in

Section 3.2.

The high-level planner maintains a tree and decides which search node to expand in a

best-first manner. To this end, each search node N stores the following information:

(1) A set of constraints T (N). A constraint (i,v, t) indicates that agent i should not traverse

to graph vertex v at time t.

(2) A solution σ(N): {σi}i∈[1···M]. The solution satisfies the endpoint and obstacle

objective, but may or may not satisfy the inter-agent objective. In addition, the solution should

obey the constraints T (N), i.e., ∀i,∀vt
i ∈ σi,(i,v, t) ̸∈ T (N).

(3) The cost of the solution c(N). The high-level planner prioritizes which search node to

expand based on this metric.

On the high level, CBS first creates a root search node with no constraints, then keeps

selecting a search node and expanding it. A search node N∗ is selected if it is a leaf node with the

lowest cost. CBS then checks whether the solution σ(N∗) has an inter-agent conflict. If there is

no conflict, σ(N∗) will be returned as the final result. Otherwise, CBS chooses the first conflict C:

(i, j, t,vt−1
i ,vt−1

j ,vt
i,v

t
j), and splits it into two constraints C1: (i,vt

i, t) and C2: ( j,vt
j, t). Two child

search nodes N1 and N2 are then generated, with constraints ∀i = 1,2,T (Ni) = T (N∗)∪{Ci}

respectively. Then an optimal low-level planner, e.g., A* [60], is called by each child search

node, which replans the path for each affected agent and records the respective solution and cost.

CBS guarantees completeness and optimality, since both the high-level and low-level planners

are performing best-first search [151].
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3.3.2 Incorporating Biased Heuristics using Focal Search

CBS is an optimal planner, but it does not scale well even for grid-based problems settings.

To improve the scalability, focal search [126, 53] was introduced by previous works, e.g., Bounded

CBS (BCBS) and Enhanced CBS (ECBS) [9]. Here we describe a simplified version of BCBS.

We present the pseudocode of focal search in Algorithm 5. Focal search introduces the

focal set to the CBS framework. A focal set (Focal) maintains a fraction of the leaf search nodes

in the CBS tree (i.e., Open). We denote LB as the lowest solution cost in leaf search nodes. All

the leaf search nodes that satisfy a near-optimal solution quality c ≤ w ·LB will be added to

Focal. This new CBS will select a search node from Focal to expand, instead of that from Open.

Compared to the original CBS, the new algorithm also performs the best-first search on Focal,

but the search priority changes from the solution cost to a new heuristic function ψ. Typically,

ψ is a handcrafted function that takes a solution as the input, and outputs a value that prefers

solutions with fewer conflicts. We instead use a learned heuristic function based on the Graph

Transformer.

Proposition. Algorithm 5 is complete and bounded-suboptimal with a factor of w≥ 1, as

mentioned in [9].

Suppose the problem is feasible, but Algorithm 5 does not find a solution given a sufficient

time budget. Then for an arbitrary search node N with a feasible solution, there exists an ancestor

search node N p added to Open but not expanded. Suppose N p∗ is the search node with the lowest

cost among these unexpanded ancestors. N p∗ is not selected by Focal, since it is not expanded.

Thus, either (i) N p∗ is not in Focal, or (ii) N p∗ is in Focal but not selected. (i) is impossible,

because there do not exist infinitely many solutions that have costs lower than 1
w · c(N p∗). (ii)

cannot happen, because there do not exist infinitely many solutions with costs lower than or equal

to w · c(N p∗). As a result, N p∗ will be selected eventually and expanded. Therefore, we have

proved the algorithm to be complete by contradiction. The focal search never expands search

nodes with costs higher than w times the optimal solution; therefore, it is bounded-suboptimal
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Algorithm 5 CBS with Biased Heuristics [9, 69]
Input: A MAPF instance and suboptimality factor w
Input: Heuristic function ψ (e.g., Graph Transformer)
Generate the root search node R with an initial solution
Initialize open list Open←{R}
LB← c(R), and initialize focal list Focal←{R}
while Open is not empty

N∗← argminN∈Focal ψ(σ(N))
C← first conflict in σ(N∗)
if C does not exist

return solution σ(N∗)
Remove N∗ from Open and Focal
if minN∈Open c(N)> LB

LB = minN∈Open c(N)
Focal = {N ∈ Open : c(N)≤ w ·LB}

Generate two children nodes N1 and N2 from node N∗

Add Ci to T (Ni), for i = 1,2
Call low-level planner to get σ(Ni), for i = 1,2
Add Ni to Open, for i = 1,2
Add Ni to Focal if c(Ni)≤ w ·LB, for i = 1,2

return No solution

with a factor of w.

We note that the focal search described here is a special case of BCBS [9], i.e., BCBS

(w,1), as the focal search is only applied to the high-level planner. In our graph-based problem

settings, there is no significant improvement when applying the focal search to the low-level

planner. Rather, if we introduce the focal search to the low-level planner, it would consume a

notable portion of computation on the collision checking of edges, which has no improvement in

the overall performance. We refer readers to Question 4 in Section 3.5.2 for further details.

3.4 Graph Transformers as Heuristic Functions

In this section, we describe the architecture of the Graph Transformer and how to train it

represent a heuristic function that accelerates CBS.
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Figure 3.2: The proposed Graph Transformer architecture. It has several desired properties that
are specifically designed to deal with MAPF inputs. See Section 3.4.1 for more details.

3.4.1 Network Architecture

The input to the graph transformer φ is a graph G, and a solution σ = {σi}i∈[1···M]. The

output φ(G,σ) predicts a scalar value as the heuristic. Such a predicted value correlates with the

chance that the current search node will yield descendant search nodes with feasible solutions.

For example, compared to those nodes that cannot eventually reduce the conflicts, the promising

nodes leading to feasible solutions should have lower φ(G,σ) values.

The graph transformer has two stages: graph tokenization and attentive aggregation. We
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describe each stage as follows.

Stage 1: Graph Tokenization. The graph tokenization transforms each graph vertex

into an embedding using a Graph Neural Network (GNN). Here we use Message-Passing Neural

Networks [55] (MPNN) as the GNN architecture. The input to the MPNN is a graph G = ⟨V,E⟩,

where the feature dv
i for each graph vertex vi ∈V is its respective 2D position, and the feature de

l

for each edge el = (vi→ v j) is the relative position of v j to vi. With two linear layers fx and fy,

the vertices and edges are first encoded as x and y using ∀vi ∈V,xi = fx(dv
i );∀el ∈ E,yl = fy(de

l ).

Then, using three MLPs { fk}k∈[1,2,3], the MPNN updates the information for each graph vertex

vi ∈V as follows:

xi← xi +max{ fk(xi,x j,yl)},∀el : (vi→ v j) ∈ E. (3.1)

After all xi are updated using MLP f1, the MPNN continues to update xi using MLP f2

and so on. The max denotes the max-pooling over the feature dimension. We use max-pooling

to take a set with an arbitrary number of elements while ensuring robustness [130]. Since it is

invariant to the permutation of these elements, the MPNN here can take graphs with an arbitrary

number of vertices and edges, but also is permutation invariant by construction.

Stage 2: Attentive Aggregation. After we compute the token xi for each graph vertex

vi from Stage 1, we model the inter-agent interactions using the Transformer [168]. The path

of each agent σi is first tokenized as ρi = {x j,∀v j ∈ σi}. To inject the temporal information of

these tokenized solutions, we introduce Temporal Encoding [189]. The approach is similar to

[168, 116] (as positional encoding in their settings). We denote ρt
i ∈ RD as the vertex token of

agent i at time step t. For each token ρt
i, we add it element-wisely with a temporal encoding
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ρt
i← ρt

i +T E(t) ∈ RD. The 2k-th and 2k+1-th dimensions of T E(t) are as follows:

T E(t)2k = sin(t/100002k/D), (3.2)

T E(t)2k+1 = cos(t/100002k/D). (3.3)

The hyperparameter 10000 is used following the common practice [168]. To encourage

the model to be aware of which agent each token ρt
i belongs to, we concatenate the Agent

Identifier τi to each token ρt
i ← ρt

i||τi, similar to [87]. For each agent i, the agent identifier τi

is calculated by taking the max-pooling over all its vertex tokens: τi = max{ρt
i},∀t ∈ [1 · · ·Ti].

Then, all tokens from the solution of all agents {ρt
i : ∀i ∈ [1 · · ·M],∀t ∈ [1 · · ·Ti]} will be fed as

the input to the Transformer Encoder. For global prediction, we append an extra trainable token

global to the input, following the common practice [35, 39]. The Transformer Encoder predicts

an output for each input token, and we use the output of the trainable global token as ζ. With a

linear layer fφ : RD→ R, the final output is computed as φ(G,σ) = fφ(ζ).

Here we use the Transformer Encoder, since it enables the Graph Transformer to take a

variable number of tokens and model their dependencies, while preserving the invariance to the

permutation of tokens. We refer readers to [168] for more details on the Transformer Encoder.

Properties of the Graph Transformer. By construction, the Graph Transformer is able

to handle the input graph with a variable number of vertices and edges, agents with a variable total

number, and the input solution with a variable length. Additionally, it is aware of the temporal

information, and inter-agent interactions. Its output is permutation invariant to both the orders of

graph vertices and the agents.

3.4.2 Training Graph Transformers

Data Generation. Given a MAPF instance, we first use CBS to generate feasible solutions. No

data will be collected if CBS fails to solve the instance. If it succeeds, we start to collect positive
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Figure 3.3: The training framework for Graph Transformer. We use a supervised Contrastive
Loss. The labels are generated from the CBS search tree.

and negative samples from its search tree. A positive sample will be collected by dataset D+, if

itself or one of its descendant search nodes contains the feasible solution. A negative sample will

be collected by dataset D−, if it is a sibling search node of a positive sample. We record each

sample’s graph G and solution σ. In addition, we record the value d as its respective depth in the

search tree.

Supervised Contrastive Learning. The objective of the model is to learn a ranking of the

samples. Namely, given an arbitrary pair of positive sample (G,σ+,d+) and a negative sample

(G,σ−,d−) from the same MAPF graph G, we learn the following ranking:

φ(G,σ+)< φ(G,σ−), if d+ ≥ d−.

We illustrate the intuition here. Imagine such ranking is learned perfectly and w = ∞,

meaning all the leaf search nodes will be in Focal. Suppose at some time point, Focal includes

1 positive sample p+. Focal may or may not include negative samples. If they exist, then their

depths are no deeper than d(p+). Define this condition as a loop invariant. Then p+ will be

selected and expanded first according to the ranking. If p+ is the feasible solution, then the

algorithm terminates. Otherwise, Focal will have one positive sample p′+ and some negative

samples, and all negative samples have depths no deeper than d(p′+). Thus, the loop invariant

remains true. The loop invariant is also true for the base case, where Focal only has the root

search node. Therefore, by learning such ranking, we encourage Algorithm 5 to expand positive
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Figure 3.4: Success rates, computation time, and flowtime within the runtime limit of 5 minutes,
as functions of the number of agents. The results are averaged over 100 test instances for each
setting of the agent number. We evaluate our approach with w ∈ [1.005,1.01,1.05,1.1,∞], and
compare its performance with CBS, ECBS (w = 1.1) and ORCA. Though trained with relatively
few agents, results have shown that our approach generalizes well and significantly outperforms
the baselines.

samples first and expand the negative samples as few as possible, which could save significant

computation and greatly accelerate CBS.

We use supervised contrastive learning to train a Graph Transformer φ that ranks the

positive samples above the negative samples. Given an arbitrary pair of positive and negative

samples, p+ : (G+,σ+,d+) ∈ D+, p− : (G−,σ−,d−) ∈ D−, this pair is defined to be valid as:

I(p+, p−) : (G+ = G−)∧ (d+ ≥ d−). With a hyperparameter γ = 0.1, we define δ(x) : max(0,γ+

x). We aim to minimize the Contrastive Loss as follows:

1
L ∑

p+∈D+
p−∈D−

δ(φ(G+,σ+)−φ(G−,σ−)) · I(p+, p−), (3.4)
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where L = ∑
p+∈D+

p−∈D− I(p+, p−) is the total number of valid sample pairs, and D+,D− are the

datasets of positive and negatives samples respectively.

Once the training of Graph Transformer φ reaches convergence, we could deploy it as

the heuristic function ψ in Algorithm 5. However, in practice, we found that the model would

predict relatively low values for multiple search nodes in the focal set, indicating that all of them

may lead to feasible solutions. To break the tie, we instead represent ψ as the depth d combined

with φ, i.e., ψ = ⟨−d,φ⟩. It means that the algorithm would first prefer the search nodes with

deeper depths; if there exist multiple search nodes with the deepest depths, then it would prefer

the search nodes with lower φ. Such a design enables the algorithm to make decisions consistently

if multiple promising nodes exist. Without further specification, we denote our approach with

such a heuristic as Graph φ.

3.5 Experiments

3.5.1 Main Experiments

(a) Heuristic (b) Network Architecture (c) Runtime Limit (d) Time Profiling (Seconds)
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Figure 3.5: We conduct 4 various ablation studies to evaluate the proposed method systemati-
cally. See Section 3.5.2 for more details.

Experimental Setup. We design two types of environments for evaluation: Maze and Box (see

Fig. 3.1). Each environment includes 2700 MAPF instances with samples generated by CBS

for training. For testing, there are 100 MAPF test instances w.r.t. each agent number setting.

We generate a random map for each Maze instance and a set of random obstacles for each Box
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instance. The graph and start and goal vertices are also generated randomly for each instance.

The training instances vary between 2 and 10 agents for Maze, and vary between 1 and 5

agents for Box. The test instances vary between 2 and 26 agents (2-10, 12, 14, 16, 18, 20, 22,

24, 26) for Maze, and vary between 1 and 10 agents (1-5, 6, 8, 10) for Box. We ensure that the

test instances are unseen in the training set. All experiments were conducted using a 12-core,

3.2Ghz i7-8700 CPU and 4 Nvidia GTX 1080Ti GPUs. We test w ∈ [1.005,1.01,1.05,1.1,∞]

for our method. For all methods, we set the runtime limit as 5 minutes, following the common

practice [69].

Baselines. We compare our method with 3 baselines: (i) Conflict-Based Search. (ii) Enhanced

Conflict-Based Search (ECBS): a bounded-suboptimal version of CBS [9]. It applies focal search

to both high-level and low-level planners, using hand-crafted heuristic functions. We choose its

w = 1.1. (iii) ORCA [166]: a reactive collision avoidance algorithm, which works effectively in

low density environments.

We find that there are very few open-source implementations that could directly apply

CBS and ECBS to non-grid-based problems. As a result, we implement all tree-search methods

(CBS, ECBS, and our method) from scratch using Python. We use basically the same framework

when implementing CBS, ECBS, and our approach. To make the comparison fair, we ensure that

all these 3 methods are aggressively optimized by strictly following the C++ implementations 1

and original paper [151, 9], and using Bayesian hyperparameter search for the w of ECBS.

Evaluation Metrics. Our evaluation includes 3 metrics: 1) Success Rate, the ratio of the number

of successful instances to the total number of test instances. An instance is successful if all

agents reach their goals with no collision before the timeout happens. 2) Computation Time, the

average computational time for each instance, including the failed ones. 2 3) Flowtime, the sum

of all the agents’ travel time. We only compare the flowtime of the CBS to our method based

1https://github.com/whoenig/libMultiRobotPlanning/
2Since CBS and ECBS call different low-level planners (A* and A*-ε), we consider the computation time to be

the fairest metric to evaluate the efficiency, instead of counting the number of expanded nodes, for instance.
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on the instances where both methods succeed, to show our approach’s bounded-suboptimality

guarantees.

Overall Performance. We demonstrate the overall performance in Figure 4.7. Our method

significantly outperforms the three baselines in both Maze and Box. It requires much less

computation time and achieves significantly higher success rates. Furthermore, though only

trained with relatively few numbers of agents, our method generalizes remarkably well to a higher

number of agents. For example, our network trained by 2 to 10 agents can be generalized up to

26 agents in Maze, while our policy trained by 1 to 5 agents can be generalized up to 10 agents in

Box. In particular, with w = 1.1, our method achieves the success rates of 47%,23%,10%,1%

in Maze with 14, 18, 22, and 26 agents, and achieves the success rates of 62%,30%.4%,0.5%

in Box with 4, 6, 8, and 10 agents. On the other side, CBS fails to solve Maze with 18 agents

and Box with 10 agents within the timeout. Similarly, ECBS starts to fail in all instances with 20

agents for Maze and with 10 agents for Box. In addition, since the bounded-suboptimality of our

algorithm is proved theoretically, it is not surprising to see that the solution qualities (flowtime)

of our method are very close to the optimal solutions. Finally, ORCA easily fails in highly dense

environments, and such performance is consistent with previous works [3].

3.5.2 Ablation Study

In this section, we investigate four questions:

(a) Is incorporating depth information into the heuristic beneficial to the perfor-

mance? Fig. 3.5 (a) illustrates the comparison between the heuristic with only φ, and with depth

d and φ, on tests from 2 to 10 agents in Maze. The result shows the effectiveness of introducing

depth information. The improvement becomes more noteworthy as the number of agents grows,

which validates our choice.

(b) Do the Temporal Encoding and the Agent Identifier improve the performance?

Fig. 3.5 (b) demonstrates the performances in Box with and without the Temporal Encoding and
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Agent Identifier. The results show that Agent Identifier and Temporal Encoding improve the

success rate. The average improvement of introducing Agent Identifier and Temporal Encoding

over the non-default settings is 16±33%.

(c) How will the runtime limit affect the performance? We take the tests with 14 agents

in Maze as an example. We set different runtime limits from 25 seconds to 300 seconds with

the interval as 25 seconds. In Fig. 3.5 (c), we show that our methods outperform the baselines

regardless of how the runtime limit changes. When the limit is 300 seconds, our method achieves

a success rate of 64% (w = ∞), while CBS, ECBS, and ORCA only have 5%, 3%, and 1%

respectively.

(d) Time profiling each module of the planners. Finally, we wish to answer the question

of why the performances of ECBS considerably degrade once we apply it to non-grid-based

MAPF instances, compared to the traditional grid-based settings. We profile each method, and

average the results over the Maze tests with 2-10 agents.

Fig. 3.5 (d) illustrates that ECBS spends considerable computation on the focal heuristic

calculation. Such behavior is reasonable, since now for dense graphs, the heuristic is calculated

by checking the collisions along edges. Such collision checking is often the main bottleneck

for planning and by itself NP-hard in general [23, 75]. Meanwhile, our method uses a learned

function for the focal heuristic calculation (the GPU part), which only takes 15% computation

cost compared with ECBS. Compared with CBS and ECBS, our method only requires 50% of the

total computation time.

3.6 Conclusion and Future Work

We proposed the Graph Transformer as a heuristic function to accelerate CBS by guiding

the tree search towards promising nodes with feasible solutions. While achieving significant

acceleration, our approach guarantees provable completeness and bounded-suboptimality. We
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show that in two continuous environments with dense motion graphs, our method outperforms

three classical MAPF baselines (CBS, ECBS, and ORCA), while generalizing to unseen tests

with a higher number of agents remarkably well. Future works include real-world experiments

and improving the method for 10x-100x agents.

3.7 Acknowledgments

Chapter 3, in full, is a reprint of Chenning Yu, Qingbiao Li (co-first authors), Sicun Gao,

Amanda Prorok, “Accelerating Multi-Agent Planning Using Graph Transformers with Bounded

Suboptimality”, ICRA, 2023. The dissertation author was the primary investigator and author of

this paper.

53



Chapter 4

Learning Control Admissibility Models

with Graph Neural Networks for

Multi-Agent Navigation

Deep reinforcement learning in continuous domains focuses on learning control policies

that map states to distributions over actions that ideally concentrate on the optimal choices in

each step. In multi-agent navigation problems, the optimal actions depend heavily on the agents’

density. Their interaction patterns grow exponentially with respect to such density, making it

hard for learning-based methods to generalize. We propose to switch the learning objectives from

predicting the optimal actions to predicting sets of admissible actions, which we call control

admissibility models (CAMs), such that they can be easily composed and used for online inference

for an arbitrary number of agents. We design CAMs using graph neural networks and develop

training methods that optimize the CAMs in the standard model-free setting, with the additional

benefit of eliminating the need for reward engineering typically required to balance collision

avoidance and goal-reaching requirements. We evaluate the proposed approach in multi-agent

navigation environments. We show that the CAM models can be trained in environments with
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only a few agents and be easily composed for deployment in dense environments with hundreds

of agents, achieving better performance than state-of-the-art methods.

4.1 Introduction

Multi-agent navigation is a longstanding problem with a wide range of practical appli-

cations such as in manufacturing [8, 190], transportation [185], and surveillance [119]. The

goal is to control many agents to all achieve their goals while avoiding collisions and dead-

locks. Such problems are multi-objective in nature, and the control methods depend heavily

on the density of the agents, with the computational complexity growing exponentially in such

density [124, 20, 125, 17].

Recently, reinforcement learning approaches have shown promising results on multi-agent

navigation problems [50, 84, 104, 107, 136], but there are still two well-known sources of the

difficulty. First, balancing safety and goal-reaching requirements often lead to ad hoc reward

engineering that is highly dependent on the environments and the density of the agents [2, 57].

Second, it is shown that such neural control policies leaned on RL approaches are hard to general-

ize when the agent density in the environment changes, which leads to distribution drifts. The

core difficulty for generalizability is that the RL approaches are designed to capture the optimal

actions specific to the training environments and rewards. Nevertheless, such optimal actions

may change rapidly when the density and interaction patterns change during deployment. The

unnecessary optimization of control policies in the training environments makes it fundamentally

hard to transfer the learned results to new environments and achieve compositionality in the

deployment to varying numbers of agents.

We propose a new learning-based approach to multi-agent navigation that shifts the focus

from learning the optimal control policy to a set-theoretic representation of admissible control

policies to achieve compositional inference. By decoupling the multi-agent navigation tasks,
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we avoid the ad-hoc reward engineering using a simple goal-reaching preference function and a

learnable set-theoretic component for collision avoidance. We use graph neural networks (GNNs)

to represent the set of admissible control actions at each state as Control Admissibility Models

(CAM), which are trained with a small number of agents during training with sparse rewards. In

online inference, we compose the CAMs and apply goal-reaching preference functions to infer

the specific action to take for each agent. We show that CAMs can be learned purely from the

data collected online in the standard RL setting, with no expert or human guidance. We propose

relabelling through backpropagation (Section 4.3.3) for the CAMs to learn rich information from

the transitions even given sparse rewards. As shown in Figure 4.1(d), the learned models of the

admissible actions are typically complex and suitable for GNN representations. Moreover, in

online inference, we decompose the state graph of the agent into much smaller subgraphs and

aggregate the CAMs from them. Such compositionality allows us to train CAMs with only a small

number of agents, directly deploy them in much denser environments, and achieve generalizable

learning and inference.

We evaluate the proposed methods in various challenging multi-agent environments,

including robot arms, cars, and quadcopters. Experiments show that the CAM generalizes very

well. While the training environments only have at most 3 agents, the learned CAM models can

be directly deployed to hundreds of agents in comparable environments and achieve a very high

success rate and low collision rate. We analyze the benefits of the proposed methods compared to

state-of-the-art approaches. Furthermore, we show a zero-shot transfer to a multi-agent chasing

game, demonstrating that the trained CAM generalizes to other tasks that are not limited to

navigation.
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Figure 4.1: (a-c) Illustrations of the multi-agent environments. We show videos in the supple-
mental materials. (d) An example landscape of the proposed CAM φ in the Drone environment.
The axes are two dimensions in the action space, corresponding to the rotation rates in pitch and
roll. We project the landscape into a 2D plane at the bottom. The blue line on the plane denotes
the zero level set, which divides the action space into the admissible and inadmissible sets.

4.2 Related Work

Multi-Agent Navigation. Classical Multi-Agent Path Finding is one of the most popular defi-

nitions of the multi-agent navigation task, where the state space lies in a pre-constructed graph

shared among agents [157]. Under this setting, heuristic-based methods have been used to gener-

ate high-quality solutions, such as Priority-Based Search and Conflict-Based Search [110, 151].

Learning-based methods have also been proposed to accelerate the planning time, using CNN

and GNN [101, 102, 145]. In this work, we focus more on the continuous state space with

reactive planning. Traditional methods, including Optimal Reciprocal Collision Avoidance [14],

Buffered Voronoi Cells [5], and Artificial Potential Functions [85, 10, 52, 63], are designed

manually to address specific structural properties. On the other hand, learning-based multi-agent

methods using reinforcement learning and imitation learning [50, 84, 104, 107, 136, 140, 152],

may or may not generalize when there is covariant shift for test tasks. Recently, MACBF [132]

incorporates multi-agent safe certificates [1, 59, 172] into a learning-based framework, which

shows the generalization capability while preserving the safety properties. Nevertheless, in [132]

the learning of the neural controller requires a reference controller, which may constrain the

potential of the neural controller, when the actions dissimilar to the reference actions could yield

better rewards and safer results. Though learned in an online fashion, our work only assumes
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Figure 4.2: An overview of the proposed CAM approach. At each time step, the state of each
agent is an egocentric graph. The graph is further decomposed at inference time into a set
of subgraphs to follow the training data distribution. The CAM takes these subgraphs and
outputs the admissibility scores along with a set of sampled candidate actions. We filter out
the inadmissible actions by checking whether the minimum of the scores is below 0. Given a
predefined preference over actions, the model outputs the most preferred action in the admissible
set for each agent.

sparse reward and avoids the reward hacking problem.

Graph Neural Networks. Graph Neural Networks (GNN), including Graph Convolutional

Networks [88], Message Passing Neural Networks [55], Interaction Networks [12], are deep neural

networks that operate on graph-structured data [147]. Graph neural networks are permutation-

equivariant to the orders of nodes on graph [186, 130], which is important for homogeneous

multi-agent problems since the order among agents should not matter. In robotics, the effectiveness

of GNN has been shown on tasks such as path planning [101, 102], motion planning [83, 182],

coverage and exploration [192, 163], and SLAM [144]. In this work, we use GNN as an

architecture to implement CAM due to the multi-agent navigation problem can be modeled as a

graph-based problem in nature. However, we believe that the proposed CAM could generalize to

other inputs that are not graphs.
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4.3 Control Admissibility Models

We present Control Admissibility Models (CAMs), a general representation of the feasible

control set. CAM is task-compositional, robust to reward design, and can be trained with an online

pipeline similar to model-free RL. With graph decomposition, CAM can plan a high-quality

solution for a large number of robots, which could be significantly out of the distribution of the

training tasks.

4.3.1 Control Admissibility Models (CAMs)

We define CAMs as a general representation of the feasible actions. In general, CAMs

are function approximators that behave as the characteristic functions of such sets. By evaluating

the CAM values we can efficiently determine whether an action is feasible. Formally,

Definition 1 (Control Admissibility Models and Admissible Set). Given CAM φ, state x, action

space A , the admissible set is defined as ∆(φ,x) : {a | a ∈ A ,φ(x,a)≥ 0}.

Compositionality of CAMs. An important feature of CAMs is that they can be composed

together. Given two CAMs φ1 and φ2, we want to find the admissible actions that satisfy both

these two CAMs:

{a | φ1(x,a)≥ 0}∩{a | φ2(x,a)≥ 0}

Proposition 1 (Composition). If φ1 and φ2 are CAMs, then ∆(φ3,x) defines ∆(φ1,x)∩∆(φ2,x),

given φ3 = min{φ1,φ2}.

4.3.2 Graph Neural Networks for CAMs

Though CAM can be applied to various single-agent problems (see Section 4.4.1 as an

example), we focus on multi-agent problems in this paper. At each timestep, the state for each

agent is an egocentric graph G = ⟨V,E⟩, where V are the vertices and E are the edges. Vertices
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Figure 4.3: The GNN architecture of the proposed CAM. A state for each agent is an egocentric
graph G, which includes the node features and edge features. The CAM first encodes the graph
using the GNN layer. The GNN layer then outputs the hidden state h for the current agent based
on the updated embedding of the corresponding node. Given action a and another MLP f , the
CAM generates the admissibility score using φ(G,a) = f (h,a).

V is composed of agent vertices Va and static obstacle vertices Vo. Edges E are connecting all

the neighbor vertices to the current agent, i.e. E = {(v j
a,vi

a)|a j ∈ E(ai)∪{(v j
o,vi

a)|o j ∈ E(ai)},

where E denotes the neighbor vertices. The one-hot vector is used as the features of V , denoting

the types of vertices. For the features of edges E, we use relative positions and the states of the

two connected vertices, along with a one-hot vector to indicate the edge types. Zero paddings are

adopted if necessary [91].

The CAM φ has two components: The first component is a GNN layer, which transforms

the graph G to a hidden state vector h for each agent. The second component is a fully-connected

layer f , which takes the hidden state h and an action a, and predicts the admissibility score

φ(G,a) = f (h,a). Such a design enables fast computation of the admissibility scores for all the

possible state-action pairs. We can merge the computation of the hidden state for all state-action

pairs which share the same input graph into one forward passing in the GNN layer.

We describe the GNN layer with the following details. The vertices and the edges are first

embedded into latent space as m(0) = gm(v),n(0) = gn(e), given fully-connected layers gm,gn.

Taking m,n, the GNN aggregates the local information for each vertex from the neighbors through

K GNN layers. For the k-th layer, it performs the message passing with 2 fully-connected layers
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f (k)m and f (k)n :

m(k+1)
i = m(k)

i +max{ f (k)m (n(k)l ) | el : (v j,vi) ∈ E},∀vi ∈V

n(k+1)
l = n(k)l + f (k)n (m(k+1)

i ,n(k)l ),∀el : (v j,vi) ∈ E
(4.1)

We assign the hidden state h with the final node embedding m(K)
i , where i corresponds to the

current agent. We use max as the aggregation operator to gather the local geometric information

due to its empirical robustness to achieve the order invariance [132, 130]. We use the residual

connection to update the vertex embedding and edge embedding due to its simplicity and robust

performance for deep layers [61, 67]. Moreover, each agent’s hidden state h is only updated

based on its egocentric graph, which is entirely invariant to the other agents’ hidden states. This

architecture decentralizes the decision-making of the whole swarm.

4.3.3 Training CAMs in Reinforcement Learning

We train CAMs in the same online setting as model-free reinforcement learning procedures.

At each time step, the agent perceives the observation from the environment and takes action. The

state-action pairs for every transition are labeled as safe or unsafe and then appended to the replay

buffer. The CAM is updated every time a certain number of transitions are collected. The main

differences between our training approach and the standard RL methods are three-fold: (i) instead

of using an actor-network, the agent chooses the action among the sampled actions based on the

admissibility score generated by CAM. (ii) the label is binary for each state-action pair instead of

calculating the cumulative future rewards. (iii) the training objective is non-bootstrapped, which

avoids the overestimation issue and is more stable. We design these three improvements around

the underlying structure of the admissibility problem. We provide further explanations as follows.

Sparse Reward Setting. We model the problem as the standard Markov Decision Process (MDP)

M = (S ,A ,T,r,γ) [160]. S is the state space represented as graphs G. The action space A is
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Algorithm 6 CAM Algorithm for Training

1: Input: Preference function ω, exploration noise N
2: Initialize CAM φ

3: Initialize replay buffer R
4: for episode = 1, M do
5: for t = 1, T do
6: Sample candidate actions {a} ⊆ A
7: {G},{T }← all agents’ current states and goal states
8: Select action for each agent according to φ(G,a), ω(G,T ,a), and N
9: Execute the selected actions and observe the next states st+1

10: Label the transition (st , at , st+1) with yt by checking whether st+1 is in danger set
11: Store transition (st ,at ,yt ,st+1) in R
12: Relabel R through backpropagation
13: Update φ using Equation 4.2

continuous. The reward r is sparse: it only returns non-zero values when the agent enters the

region to avoid and the region to reach. These certain regions can also be dynamic, i.e., danger

regions centering around other agents.

Preference Function. Given current state G and goal state T , we assume a preference function

over actions, i.e., ω(G,T , ·), is given. The preference function solely focuses on the goal-reaching.

For instance, it can simply be the L2 distance from the next state to the goal, since CAM will

achieve the obstacle avoidance. In the experiments, we try to choose the preference functions as

simple as possible.

Action Selection via Sampling. At every timestep, the agent chooses an action among a batch

of actions sampled from the action space. Given a state x, the admissibility value every action

a is computed with φ(x,a). If there exist one or multiple actions that satisfy {a | φ(x,a) ≥ 0},

given the goal state T and a preference ω(x,T , ·) over actions, we choose the action that has the

highest preference score in the admissible set. Namely, argmaxa{ω(x,T ,a)|φ(x,a)≥ 0}. If there

does not exist any admissible action, in order to fulfill the admissibility property maximally, the

agent chooses the action that has the highest admissibility score, argmaxa{φ(x,a)}+N , where

N is an exploration noise. We model the exploration noise under the uniform distribution in our
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experiment.

Training Loss of CAM. Given admissible transitions R0 ⊆ S ×A and inadmissible transitions

Rd ⊆ S ×A , we train the CAM with the following objective:

LB =
1
|R0| ∑

(x,a)∈R0

ReLU(γ1−φ(x,a))+
1
|Rd| ∑

(x,a)∈Rd

ReLU(γ2 +φ(x,a))

+
1
|R0| ∑

(x,a)∈R0

ReLU(γ3− φ̇(x,a)−λφ(x,a)) (4.2)

where γ1,γ2,γ3 ≥ 0 are the coefficients to enlarge the margin of the learned boundary.

Instead of simply classifying the transitions with the first and the second loss terms, we encourage

the forward invariance property by adding the third term, similar to Control Lyapunov Functions

and Control Barrier Functions [1]. In practice, we approximate φ̇(x,a) by φ(x′,a′)−φ(x,a), where

(x′,a′) is the next state-action pair on the trajectory. Intuitively, once all pairs of consecutive

transitions satisfy this condition, the transitions would form a forward invariant set, and any

trajectory starting from inside the invariant set will never cross the admissible boundary. The

λφ(x,a) term encourages the trajectory to be asymptotically admissible, even if the agent enters

the inadmissible region sometimes.

Relabeling Through Backpropagation. We first label the collected transitions as admissible and

inadmissible based on whether the next state is in the danger region. Once the whole trajectory

terminates, we relabel these transitions through backpropagation. Intuitively, suppose the agent

encounters the collision along the trajectory. In that case, it means that starting from some

timestep, it enters the inadmissible region and fails to get back to the admissible set (similar to

Intermediate Value Theorem [142]). Without relabeling, the labels of the transitions from this

step to the collision event will be admissible, which is incorrect. To solve this issue, we relabel

these critical transitions.

A state-action pair (x,a) on the trajectory is relabelled as inadmissible, if (i) the next

state-action pair (x′,a′) is inadmissible, and (ii) no admissible action is found at state x′ - namely,
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maxa′ φ(x′,a′) < 0. Intuitively, the relabelling propagates the inadmissibility from where the

agent enters the danger region back to a state, where the agent can make a decision leading to

admissible regions. The first condition ensures the optimistic behavior of the CAM. We only

relabel those transitions which stay in the inadmissible region and encounter danger in the future.

Such optimism is important when no feasible trajectory exists at the early training stage. It

encourages the agent to explore instead of predicting almost every transition to be inadmissible.

The second condition ensures that there exist no admissible actions approximately by inspecting

the admissibility score for all the actions. Furthermore, for the transitions that have potential

admissible actions, they will not be relabelled as inadmissible easily at the early training stage

since maxa′ φ(x′,a′)< 0 is hard to meet for a moderately initialized CAM.

4.3.4 Online Inference with Graph Decomposition

At inference time, the agent behaves in the same manner as the training stage, except that

there is no exploration noise during inference. When the CAM is applied directly to a large swarm

of agents, however, we find that the performance degrades significantly due to the distribution

shift. Such degradation occurs considerably when the inference task has a much higher density of

agents. To solve this issue, we leverage the compositional property of CAMs and propose graph

decomposition.

Decomposition on Large Graphs. We can break down the whole graph G into subgraphs {Gk},

where these subgraphs satisfy the training distribution, e.g., the number of agent vertices does not

exceed a certain value. We construct the subgraphs repeatedly until all the edges in G appear at

least once in the subgraphs. For each subgraph Gk, and action a, we calculate the admissibility

score as φ(Gk,a). Though each subgraph defines a less strict subtask for the agent to perform,

the admissible set for the original task should lie in the intersection of all these admissible sets

of the subtasks. As a result, these values on the subgraphs can be composed to represent the

admissibility score on the entire graph φ(G,a), which could be totally out of distribution. To
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compose the admissibility values, we follow Proposition 1 and use φ(G,a) = minGk⊆G{φ(Gk,a)}.

Algorithm 7 CAM Algorithm for Inference
1: Input: CAM φ, preference function ω, distribution P of training data
2: for t = 1, T do
3: for each agent’s current state G, goal state T do
4: Sample candidate actions {a} ⊆ A
5: Initialize φ(G,a) as ∞ for all sampled candidates
6: repeat
7: Sample Gi ⊆ G, where Gi ∼ P
8: φ(G,a) = min(φ(G,a),φ(Gi,a)) for all candidates a
9: until all edges on G are sampled at least once

10: Select action for the agent according to φ(G,a) and ω(G,T ,a)
11: Execute the selected actions and observe the next states st+1

4.4 Experiments

4.4.1 Proof of Concept: CAM for Single Agent Environment
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Figure 4.4: A proof of concept for the proposed CAM in a single-agent environment. The
agent aims to reach the goal while avoiding obstacles. The black point denotes the starting
state, and the red star denotes the goal state. The shaded blue regions denote the obstacles.
Given the learned CAM φ, action space A : {−0.1,0.1}2, and an arbitrary state x ∈ X : {−3,3}2,
we illustrate maxa∈A φ(x,a), mina∈A φ(x,a), and p(φ(x,a)≥ 0) respectively. We show that the
learned CAM never leaves the admissible set, i.e. {x ∈ X : maxa∈A φ(x,a) ≥ 0}, along the
trajectory.

We begin by analyzing the CAM agent in a single-agent environment. We perform such
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analysis using a 2D minimal example environment, where we place three danger regions to

form narrow passages, as shown in Figure 4.4. We illustrate maxa∈A φ(x,a), mina∈A φ(x,a),

and p(φ(x,a) ≥ 0) respectively. Intuitively, maxa∈A φ(x,a) indicates whether there exists any

admissible actions that drive the agent to the admissible set. mina∈A φ(x,a) indicates the pos-

sibility to enter the inadmissible sets if actions are picked randomly. As what we show in the

figure, the trajectory (blue dashed line) does not intersect with the admissibility boundary, i.e.

{x ∈ X : maxa∈A φ(x,a) = 0}. This example stays consistent with the forward-invariance objec-

tive for learning the CAM: if the agent executes an admissible action a ∈ A : φ(x,a)≥ 0 at every

time step, then it will never leave the admissible set.

We provide more details on the experiment setup as follows:

Dynamics. The agent here follows the single integrator and controls a 2D action. The state

x = [px, py], representing the position in the 2D space. The 2D action a = [vx,vy] ∈ A = [−1,1]2

is composed of the velocities along x and y axis, and the dynamics to compute the next state x′ is

x′ = f (x,a) = x+

vx

vy

 ·dt (4.3)

We choose dt = 0.05 in our experiment. In this example, we use an MLP to represent

CAM, since the state here is solely a vector.

Task Distribution. The goal state [px = 0, py = 1.7], and the obstacles are all fixed during training

and test. The starting state of the agent is fixed as [px = 0, py =−1.7].

Collision and Goal-reaching Criteria. We define the agent as a circle with a radius of 0.15. The

goals are circles with a radius of 0.15. The agent is in a collision if it intersects with the obstacles.

If the agent intersects with the 2D goal, then the goal is reached.

Preference Function ω. The preference function calculates the negative of distance to the goal

based on the next state: ω(x,T ,a) =−||(p′x, p′y)−T ||22, [p′x, p′y] = x′ = f (x,a).
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Figure 4.5: We show that the forward-invariance property holds along the trajectory. The direc-
tion of each arrow indicates the most admissible action to take on each state x: argmaxa∈A φ(x,a).
The green arrows represent the states in the inadmissible region {x | ∀a ∈ A ,φ(x,a) < 0}.
Both the blue arrows and the red arrows represent the states on the boundary: {x | ∃a1,a2 ∈
A ,φ(x,a1)≥ 0,φ(x,a2)< 0}. The blue arrows are those boundary states that hold the forward-
invariance property. The red arrows are those boundary states that enter the inadmissible region
after executing the most admissible action. Note: Since we only train on transitions from
collected trajectories, CAM can be asymmetric and violate the forward-invariance property at
some unseen states.

Forward-Invariance Property

To further investigate whether the learned CAM holds the forward-invariance property,

we illustrate the boundary of the CAM {x | ∃a1,a2 ∈ A ,φ(x,a1)≥ 0,φ(x,a2)< 0} in Figure 4.5.
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We show that the trajectory never leaves the admissible region of CAM, i.e., the trajectory

holds the forward-invariance property. Once the trajectory meets the boundary, it starts to follow

the most preferred action among admissible actions, instead of the most preferred action among

all sampled actions. Meanwhile, we find that around 0.9% states in the boundary states violate

the forward-invariance property, i.e., they enter the inadmissible region after executing the most

admissible action.

We emphasize that since we only train on transitions from collected trajectories, CAM

can be asymmetric and violate the forward-invariance property at some unseen states. We design

the CAM to maintain the forward invariance and focus on states that could exist along possible

trajectories. If the agent does not meet some states at any time step during inference, then we do

not require these states to obey the forward invariance. Empirically, we have shown that as long

as the training tasks and inference tasks are under the same distribution, the forward invariance

often holds for inference trajectories once the CAM learns from enough training data.

4.4.2 Additional Single Agent Environment: Dynamic Dubins

In this section, we provide an additional single-agent experiment as a proof of concept.

This example has more complex dynamics than the one in the previous section. We provide more

details on the experiment setup as follows:

Dynamics. The agent here is one dynamic Dubins’ car and controls a 2D action. The state

x = [px, py,v,θ], px, py ∈ R,v ∈ [0,1],θ ∈ [0,2π), representing the position, velocity, and heading

angle in the 2D space. The 2D action a ∈ A = [−1,1]2 is composed of the acceleration rate q and

the angular velocity θ̇, and the dynamics to compute the next state x′ is
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x′ = f (x,a) = x+



v · sin(θ+ θ̇ ·dt)

v · cos(θ+ θ̇ ·dt)

q ·dt

θ̇ ·dt


(4.4)

We choose dt = 0.05 in our experiment. In this example, we use an MLP to represent

CAM, since the state here is solely a vector.

Note that the maximum acceleration rate is saturated here. At each time step, the agent

can change the velocity by increasing or decreasing 0.05 at most. As a result, the agent needs to

catch failure early on.

Task Distribution. The goal state (px = 0, py = 1.7), and the obstacles are all fixed during

training and test. The starting state of the agent is randomized within the ditribution of px ∈

[−0.25,0.25], py =−1.7,v = 0,θ = π

2 .

Collision and Goal-reaching Criteria. We define the agent as a circle with a radius of 0.15. The

goals are circles with a radius of 0.15. The agent is in a collision if it intersects with the obstacles.

If the agent intersects with the 2D goal, then the goal is reached.

Preference Function ω. The preference function calculates the negative of distance to the goal

based on the next state: ω(x,T ,a) =−||(p′x, p′y)−T ||22, p′x, p′y ∈ f (x,a).

Forward-Invariance Property

We sample around 40 trajectories starting from the initial states, and illustrate the collected

transitions in Figure 4.6. The direction of each arrow indicates the action that CAM agent takes

on each state x. The blue arrows represent the admissible region {x | ∀a ∈ A ,φ(x,a)≥ 0}. Both

the red and the green arrows represent the states on the boundary: {x | ∃a1,a2 ∈ A ,φ(x,a1) ≥

0,φ(x,a2)< 0}. Only the red arrows represent those boundary transitions that violate the forward-
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Figure 4.6: An additional single-agent example for the proposed CAM dealing with more
complex dynamics, where the agent needs to catch failure early on. The red star represents the
goal state, and three blue boxes represent the obstacles. The orange region denotes the set of
initial states. We illustrate state-action pairs (x,a) on sampled trajectories starting from initial
states. All trajectories reach the goal successfully with no collisions. The direction of each
arrow indicates the action that CAM agent takes on each state x. The blue arrows represent
the admissible region {x | ∀a ∈ A ,φ(x,a) ≥ 0}. Both the red and the green arrows represent
the states on the boundary: {x | ∃a1,a2 ∈ A ,φ(x,a1) ≥ 0,φ(x,a2) < 0}. Only the red arrows
represent those boundary transitions that violate the forward-invariance property. The black
arrows represent the states in the inadmissible region {x | ∀a ∈ A ,φ(x,a)< 0}.

invariance property. The black arrows represent the states in the inadmissible region {x | ∀a ∈

A ,φ(x,a)< 0}.
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We show that around 98.6% of transitions along the trajectories are admissible and forward

invariant. There are around 27.7% of states on the boundary. Around 0.4% of states violate the

forward-invariance property, i.e., the CAM agent crosses the boundary and enters the inadmissible

region after executing the action. There are 1% of transitions that are inadmissible, but all of

them return back to the admissible regions after executing sequences of most admissible actions.

4.4.3 Details for Multi-Agent Environment

Before proceeding to the main experiment, we provide the details of the multi-agent

environments we used in our experiments. We design four different environments, including

UR5, Car, Dynamic Dubins, and Drone. Each environment has its own dynamics, graph repre-

sentation, training distribution, collision and goal-reaching criteria, preference function ω, and

hyperparameters. The details are described as follows:

Details for the UR5 Environment

Dynamics. Each UR5 agent controls a 5D robot arm. The state x = [θ1,θ2,θ3,θ4,θ5] ∈

[−2π,2π]5, representing the angles on the joints of base to shoulder, shoulder to lift, elbow,

wrist 1, and wrist 2. The action is the angular velocity a = [θ̇1, θ̇2, θ̇3, θ̇4, θ̇5] ∈ [−1,1]5, and the

dynamics to compute the next state x′ are

x′ = f (x,a) = x+a ·dt (4.5)

We choose dt = 0.1 in our experiment.

Graph Representation. Each node v ∈ V is simply a zero scalar. For each agent. Each edge

e : (vi,v j) ∈ E is a 18D vector, which concatenates 4 vectors. The first 4D vector is a one-hot

vector representing the arm ID of vi. The second 5D vector represents the state of the arm vi. The

third and fourth vectors follow the same representation as to the first and the second vectors, but
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those of arm v j replace the values. The graph is complete for this environment, i.e., each arm can

affect any other arm in the environment.

Training Distribution. The training distribution is that only two arms should be in the graph.

Collision and Goal-reaching Criteria. We define collision as the contact or penetration between

one arm and another arm or static obstacle. If the state of the arm is within 0.3 distance of the

goal, then the goal is reached.

Preference Function ω. The preference function calculates the negative of distance to the goal

based on the next state: ω(G,T ,a) =−|| f (xG,a)−T ||22.

Hyperparameters. For each time step, we sample N = 2000 candidate actions for every agent.

The initial learning rate of the ADAM optimizer is 3e-4, and we decrease the learning rate with a

factor of 0.5 when the performance in the validation environment meets a plateau until we reach a

minimum learning rate of 1e-4. We set γ1,γ2,γ3 as 0, 1e-1, 1e-2. We use a batch size of 256 and

update the network every 20 trajectories.

Details for the Car Environment

Dynamics. Each Car agent follows the Dubins’ Car dynamics [42]. The state x =

[px, py,θ], px, py ∈ R,θ ∈ [0,2π), representing the positions on 2D plane and the heading an-

gle. We apply a constant v = 0.05 as the velocity for each agent. The action is the angular velocity

a = [θ̇] ∈ [−2
3π, 2

3π], and the dynamics to compute the next state x′ are

x′ = f (x,a) = x+


v · sin(θ+ θ̇ ·dt)

v · cos(θ+ θ̇ ·dt)

θ̇ ·dt

 (4.6)

We choose dt = 1 in our experiment.

Graph Representation. Each node v ∈V is a one-hot vector indicating whether the current node

is an agent or a static obstacle. Given each edge e : (vi,v j) ∈ E, the feature vector of the edge is
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[I,sin(θi),cos(θi),sin(θ j),cos(θ j), px,i− px, j, py,i− py, j], where I is a one-hot vector, representing

whether the current edge is obstacle-to-agent or agent-to-agent. For the obstacle-to-agent edges,

sin(θi),cos(θi) are padded as 0.

We define each node’s neighbors, including agents and obstacles, as those nodes having

a distance within 1.5 to the current node. We only connect edges from these neighbor nodes to

each node.

Training Distribution. The training distribution is that only 0-2 neighbor agents and 0-9 neighbor

obstacles should be in the graph.

Collision and Goal-reaching Criteria. We define the agent and the obstacle as circles with a

radius of 0.15. The goals are circles with a radius of 0.3. The agent is in a collision if it is within

a distance of 0.3 to other agents or obstacles. If the agent’s position is within a distance of 0.45 to

the 2D goal, then the goal is reached.

Preference Function ω. The preference function calculates the negative of distance to the goal

based on the next state: ω(G,T ,a) =−||(p′x, p′y)−T ||22, p′x, p′y ∈ f (xG,a).

Hyperparameters. For each time step, we sample N = 2000 candidate actions for every agent.

The initial learning rate of the ADAM optimizer is 1e-3, and we decrease the learning rate with a

factor of 0.5 when the performance in the validation environment meets a plateau until we reach a

minimum learning rate of 1e-5. We set γ1,γ2,γ3 as 0, 2e-2, 1e-2. We use a batch size of 256 and

update the network every 10 trajectories.

Details for the Dynamic Dubins Environment

Dynamics. The agent follows dynamic Dubins’ car and controls a 2D action. The state x =

[px, py,v,θ], px, py ∈ R,v ∈ [0,1],θ ∈ [0,2π), representing the position, velocity, and heading

angle in the 2D space. The 2D action a ∈ A = [−1,1]2 is composed of the acceleration rate q and

the angular velocity θ̇, and the dynamics to compute the next state x′ is
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x′ = f (x,a) = x+



v · sin
(
θ+ θ̇ ·dt

)
v · cos

(
θ+ θ̇ ·dt

)
q ·dt

θ̇ ·dt


(4.7)

We choose dt = 0.05 in our experiment.

Graph Representation. Each node is a one-hot vector indicating whether the current node

is an agent or a static obstacle. Given each edge e : (i, j) ∈ E, the feature vector of the edge

is [I,vi,v j,sin(θi),cos(θi),sin(θ j),cos(θ j), px,i− px, j, py,i− py, j], where I is a one-hot vector,

representing whether the current edge is obstacle-to-agent or agent-to-agent. For the obstacle-to-

agent edges, vi,sin(θi),cos(θi) are padded as 0.

We define each node’s neighbors, including agents and obstacles, as those nodes having

a distance within 1.5 to the current node. We only connect edges from these neighbor nodes to

each node.

Training Distribution. The training distribution is that only 0-2 neighbor agents and 0-9 neighbor

obstacles should be in the graph.

Collision and Goal-reaching Criteria. We define the agent and the obstacle as circles with a

radius of 0.15. The goals are circles with a radius of 0.3. The agent is in a collision if it is within

a distance of 0.3 to other agents or obstacles. If the agent’s position is within a distance of 0.45 to

the 2D goal, then the goal is reached.

Preference Function ω. The preference function calculates the negative of distance to the goal

based on the next state: ω(G,T ,a) =−||(p′x, p′y)−T ||22, p′x, p′y ∈ f (xG,a).

Hyperparameters. For each time step, we sample N = 2000 candidate actions for every agent.

The initial learning rate of the ADAM optimizer is 1e-3, and we decrease the learning rate with a

factor of 0.5 when the performance in the validation environment meets a plateau until we reach a
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minimum learning rate of 1e-5. We set γ1,γ2,γ3 as 0, 2e-2, 1e-2. We use a batch size of 256 and

update the network every 10 trajectories.

Details for the Drone Environment

Dynamics. Each Drone agent follows a 3D quadrotor model adopted from [34] and controls

a 4D action. The state x = [px, py, pz,vx,vy,vz,α,β,γ], px, py, pz ∈ R,vx,vy,vz ∈ [−1,1],α,β,γ ∈

[−π/2,π/2], representing the position and velocity in the 3D space, and the angles in pitch, roll,

and yaw. The action is the instant acceleration q and the angular velocities, i.e., a = [q, α̇, β̇, γ̇] ∈

[−1,1]4, and the dynamics to compute the next state x′ is

f (x, t +dt) = f (x, t)+



vx

vy

vz

−sin(β) ·q

cos(β)sin(α) ·q

cos(β)cos(α) ·q−g

α̇

β̇

γ̇



·dt

f (x,0) = x

x′ = f (x,k ·dt)

(4.8)

g is the gravity acceleration of the Earth as 9.8. We choose dt = 0.01 and k = 10 in our

experiment.

Graph Representation. Each node v ∈ V is a one-hot vector indicating whether

the current node is an agent or a static obstacle. Given each edge e : (vi,v j) ∈
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E, the feature vector of the edge is [I,vx,i,vy,i,vz,i,sin(αi),cos(αi),sin(βi),cos(βi),vx, j,vy, j,

vz, j,sin(α j),cos(α j),sin(β j),cos(β j), px,i− px, j, py,i− py, j, pz,i− pz, j], where I is a one-hot vec-

tor, representing whether the current edge is obstacle-to-agent or agent-to-agent. For the obstacle-

to-agent edges, vx,i,vy,i,vz,i,sin(αi),cos(αi),sin(βi),cos(βi), pz,i− pz, j are padded as 0.

We define each node’s neighbors, including agents and obstacles, as those nodes having

a distance within 1.5 to the current node. We only connect edges from these neighbor nodes to

each node.

Training Distribution. The training distribution is that only 0-2 neighbor agents and 0-9 neighbor

obstacles should be in the graph.

Collision and Goal-reaching Criteria. We define the agent as spheres with a radius of 0.15. The

obstacles are vertical cylinders with a radius of 0.15 and infinite height. The goals are spheres

with a radius of 0.3. The agent is in a collision if it has a distance within 0.3 to other agents or

obstacles in the 3D space. An agent reaches its goal if its 3D position has a distance of 0.45 to its

goal.

Preference Function ω. The preference function calculates the negative of an error between

the action a and a linear–quadratic regulator (LQR) controller π. The LQR controller π takes

the goal and the current state, and gives an action which only considers the goal-reaching:

ω(G,T ,a) =−||π(xG,T )−a||22.

Hyperparameters. For each time step, we sample N = 2000 candidate actions for every agent.

The initial learning rate of the ADAM optimizer is 1e-3, and we decrease the learning rate with a

factor of 0.5 when the performance in the validation environment meets a plateau until we reach a

minimum learning rate of 1e-5. We set γ1,γ2,γ3 as 0, 1e-1, 1e-2. We use a batch size of 256 and

update the network every 20 trajectories.
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4.4.4 Multi-agent Navigation Experiments

Experiment Setup. We evaluate our methods under 4 types of environments: UR5, Car, Dynamic

Dubins, and Drone. We briefly describe these 4 environments as follows: (i) The UR5 environment

is implemented with PyBullet [31] and contains 4 decentralized 5D robot arms with cubic

obstacles. We randomly select solely 2 robot arms from these four arms during training. We fix

the configurations of the static obstacles and the goal states of the arms. In order to make the test

task solvable, the initial states are randomized during training and fixed during testing. (ii) For

the Car environment, each agent follows the 2D Dubins’ car model [42], and controls a 1D action.

The static obstacles are circles with a fixed radius. (iii) The Dynamic Dubins agent controls a 2D

action and follows a modified Dubins’ Car dynamic which enables the control of acceleration.

(iv) For the Drone environment, each agent follows a 3D quadrotor model adopted from [34] and

controls a 4D action. Each obstacle is a cylinder with infinite height. For both Car and Drone

environments, we only train on environments with 3 agents, randomized initial states and goal

states, and a set of random obstacles. The map size is fixed as 3x3 during training while varying

during testing.

To evaluate our CAM approach thoroughly, we design diverse scenarios for all four

environments. For the UR5 environment, we make the number of agents vary from 2 to 4. For

scenarios with 2 or 3 arms, the arms are selected randomly from the four decentralized arms. For

the other environments, we fix the map size as 32x32 and vary the ratio of agents over obstacles

from 1:1023 to 512:512. For each setting, we average the performance over 100 randomly

generated test cases.

Baselines. The baseline approaches we compare with include DDPG [103] and MACBF [132].

DDPG is a standard RL approach to learning safe behavior through maximizing rewards. MACBF

is a state-of-the-art approach for multi-agent safe control problems, which learns a policy jointly

with neural safe certificates. We reimplement all the baselines with GNNs for a fair comparison.

Note that our GNN implementation for DDPG is a multi-agent algorithm, since each agent is
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aware of the other agents by taking the egocentric graph as the input.

Evaluation Metrics. We evaluate our methods based on two metrics: the safe rate and the

average reward. The safe rate counts the number of collisions for each agent at every time step

and averages over all the agents through the whole trial [132]. At each time step, the reward is -1

if the agent collides with another agent or the static obstacle. A +10 reward will be given at the

end of the trajectory, if the agent reaches its goal at any time step along the trajectory. A small

negative constant of -0.1 is added to the reward to encourage shorter paths for goal-reaching. The

reward is accumulated throughout the trial and averaged over all the agents.

Figure 4.7: We show the performances of CAM and prior methods in the UR5, Car, Dynamic
Dubins, and Drone environment, where each method is trained with 3 agents during training but
tested up to 512 agents. CAM substantially outperforms prior approaches in all the environments.

Overall Performance. In Figure 4.7, we demonstrate the overall performances for the UR5, Car,

Dynamic Dubins, and Drone environments. Our method shows the generalization across different

environments and densities of agents and obstacles. Though trained with only 3 agents, the safety

rate of CAM remains nearly 100% for all the environments, up to 512 agents. Even if the density

of agents and obstacles deviates from the training environment, our CAM approach can avoid the

distribution shift, using decomposition on large graphs and the compositionality of CAMs.

On the other side, though our implementation for MACBF and DDPG can take an arbitrary

number of agents using GNNs, the performance degrades significantly when the distribution of
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input graphs shifts in test environments. We also inspect that the averaged reward for all the

methods decreases in most cases when the number of agents increases. It is due to more agents

failing to reach the goal when the timeout happens since it takes more time for agents to avoid

each other. We encourage the reader to view the video demonstrations in the supplementary

material for all 4 environments.

4.4.5 Notes on the Multi-agent Navigation Experiments

Reproducing the Baselines. The inputs to the networks of DDPG and MACBF are the same

as those to the CAM. For DDPG, we use the GNN architectures as the actor and Q-critic

network. The GNN actor takes an egocentric graph for each agent and outputs the action. The

GNN critic takes the graph and action and outputs the Q value. For MACBF, since it requires

differentiable dynamics, we implement an additional dynamic function using PyTorch to guarantee

the differentiability. When computing the derivative of the CBF value over time, we assume the

graph structure remains the same, i.e., no adding or removing edges. We also find that replacing

the temporary dataset of MACBF with the replay buffer, typically used for the RL methods,

improves the stability of MACBF.

Notes on why MA-DDPG is not deployed here [107]: Our GNN implementation deviates

from the MA-DDPG algorithm because of scalability concerns. In MA-DDPG, the actor network

for each agent is independent and does not share the weight. As a result, MA-DDPG requires the

same number of agents for the training and inference tasks. However, in our experiment, since

we focus on the generalization for scalability, the number of agents during inference varies, while

our training tasks are fixed to have three agents. Thus, it is impossible to deploy the MA-DDPG

algorithm.

Running the Experiments. All the methods are trained on CPU as Intel Core i7-11700F. The

GPU is NVIDIA RTX 3080. We train each method until we reach convergence, which typically

requires fewer than two days.
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Accelerating the Computation. Though the GNN can be deployed on decentralized devices at

inference time, we conduct our experiment on one single desktop, which requires computation

optimization. Assume at a time step of the inference time that there are 512 agents in the

environment. We need to test 2000 actions for each agent, and each agent samples at least 100

subgraphs. We can infer that there are at least 100×2000×512≈ 1.02×108 forward operations

for the GNN to compute. We need to accelerate such computation; otherwise, the computational

cost will be intractable.

We conduct three improvements for the acceleration. The first improvement is to merge

the computation of the hidden state for all state-action pairs which share the same input graph into

one forward passing in the GNN layer, as mentioned in Section 4.3.2. The second improvement

is to parallelize the computation of the CAM value by stacking the pairs of hidden states and

actions as a matrix and then feeding it to the GPU. Such stacking enables the computation with

batches of state-action pairs. The third improvement is to choose which agents to compute for

each batch adaptively. By inspecting the CAM values of the computed batches, if we have already

found admissible actions for one specific agent, then the rest of the state-action pairs for this

agent do not need to be computed, and the agent chooses the action among those admissible

actions that have been computed. By filtering out the determined agents, we save the unnecessary

computation of the state-action pairs of these agents.

4.4.6 Zero-Shot Transfer to Chasing Game

In this section, we study the generalization of our CAM model for zero-shot transfer to

other multi-agent tasks, e.g., the chasing game. In the chasing game, each agent chases another

agent to pursue. The target agent is assigned randomly at the beginning of every episode. The

agent’s goal is to maintain the distance to the assigned agent, with no collision with agents and

obstacles. We fix the number of agents to 64 in the experiment. This new task is substantially

different from the task for training, where the assigned goal is fixed. We define the safety rates
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Table 4.1: Left: A snapshot of a trajectory in the chasing game with 16 Drone agents from a
bird’s-eye view. The agents are the colorful points, and the obstacles are the blue circles of a
larger size. Each agent aims to chase another agent without collision. Right: Performances of
CAMs with and without graph decomposition on 64 agents, which shows the effectiveness of
the graph decomposition.

Method CAM CAM w/o decomposition

Safety Rate (Car) 0.99±0.00 0.90±0.03

Reward (Car) 3.10±1.20 -19.98±7.08

Safety Rate (Drone) 0.989± 0.005 0.988±0.008

Reward (Drone) 6.84±1.12 6.54±2.15

of the chasing game in the same way as those of the navigation task. The reward is defined in

another way, to reflect on the situation that one Drone agent could drift away from its target

agent though it executes the most preferred action. We want to avoid penalizing such behavior

because the most preferred action should not be discouraged if it is also safe at the same time. We

define reward as follows: R = ∑
T
t=1 clip(dt−1−dt ,0,2), where dt−1 and dt indicate the distances

between the agent and the target agent in 2D or 3D space at t−1-th and t-th step. Such a reward

keeps track of the agent’s improvement at every step while not penalizing on no progress. The

preference for the agent follows the same way we defined in the navigation tasks of the Car and

Drone. We update the goal for each agent to be the position of the target agent at every step.

In Table 4.1, we show that our CAM method can adapt to the new task effectively due

to its safety and goal-reaching decoupling property, preserving a relatively high safety rate and

reward. In addition, we compare our method to the CAM without the graph decomposition. We

observe that the graph decomposition works effectively in both environments. The performance of

the Car environment benefits more from the graph decomposition. This advancement is because

the density of Car agents in 2D is higher than that of the Drone agent in 3D. The higher density

makes the test task more unlike the training task, which explains why the graph decomposition is

more beneficial for Car.
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4.5 Ablation Study: Varying Obstacle Density

Car

Car

Drone

Drone

Figure 4.8: The performance of all methods on Car and Drone with regard to varying obstacle
numbers.

In the main paper, we test the scenarios where the densities of both the agents and the

obstacles vary. In this section, we focus on how the obstacle density affects the performance of

each method.

We fixed the map size to be 4x4 and increased the obstacle number from 0 to 20. We

average the results over 100 randomly generated environments. We do not include the UR5

environment since the obstacle number for UR5 is fixed to be 4. As shown, the CAM significantly

outperforms other methods and maintains the safety rate near 100%. On the other hand, MACBF

and DDPG show a lack of robustness when the obstacle density increases. We also observe a

remarkable degradation of the performance of MACBF for the Drone environment. When there

are 0 obstacles, the safety rate of MACBF is close to 99%, but then the safety rate jumps to

around 90% when there are 5 obstacles. Such a result shows that MACBF works better to avoid

inter-agent collisions and cannot deal well with obstacle-agent collision avoidance. This result
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explains why the performance of MACBF improves while the density of obstacles decreases in

the Drone environment in Figure 4.7.

4.6 Ablation Study: Inference Time

Figure 5.5 illustrates the running time during inference. We average the running time over

all the agents and all the time steps in the test cases. With the three acceleration improvements

mentioned in Section 4.4.5, we can now reduce the running time to around 4.3 milliseconds at

most. The computation time can further be improved when deployed in real-world experiments.

In that case, each agent can compute the admissible set independently, since our GNN architecture

is fully decentralized. It only requires observations of nearby agents and obstacles and does not

need inter-agent communication.

We find that in Figure 5.5, the trends of the running time for Car and Drone are similar -

the running time decreases and then increases as the density of agents grows. The running time

first decreases, since our method utilizes the GPU and computes the admissible actions of all the

agents in parallel. However, when the number of agents grows to a certain threshold between 32

and 128, the memory of the GPU will reach its limitation and cannot take more agents beyond this

threshold. If the number of agents is higher than this threshold, we need multiple GPU forward

passes to cover all the agents. As a result, the running time increases afterward. More GPU

memory should make the computation even faster in such a centralized computation scenario.

4.7 Limitations and Failure Modes

While the framework is generalizable in terms of scalability, it has limitations. Since the

proposed GNN architecture is entirely decentralized, it disables the agents from communicating

and coordinating with each other in the swarm. As a result, it could be challenging for agents to
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Figure 4.9: The average running time of our method on Car and Drone during inference for
each agent at each time step (in milliseconds). The running time is averaged over the 100 test
cases.

identify and avoid critical situations requiring interactions among agents, e.g., dead-locks and

states with very few feasible actions. As shown in Figure 4.7, there is a slight drop in the safety

rate of the Drone environment when the number of agents increases to 512. To understand such a

failure mode, we inspect these trajectories and find that the corresponding CAM values are all

negative at several consecutive preceding states right before the collision. Such behavior indicates

a very low probability of finding feasible actions in these states, which validates the necessity for

inter-agent communication or global coordination when the density of agents is very high in local

regions. We believe that a preference function considering the global coordination can be helpful

for this issue.
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4.8 Conclusion

We proposed new learning-based control methods for multi-agent navigation problems

by shifting the focus from training optimal control policies to training CAMs that implicitly

represent a set of feasible actions. We avoid the reward engineering by decoupling the multi-agent

navigation tasks using a simple goal-reaching preference function and a learnable CAM for

collision avoidance. Our methods use GNNs to represent the CAM which takes egocentric

graphs as inputs and proposes the relabelling with backtracing to learn from rich information

even given sparse reward. In online inference, we propose the graph decomposition to deal with

the covariate shift, which achieves a notably high success rate and low collision rate. While

unconventional compared to the types of models routinely used in multi-agent reinforcement

learning, we demonstrate that CAM has several useful properties and is particularly effective

in multi-agent settings that require compositionality and generalization for scaling at inference

time. In future work, we will study how to incorporate multi-agent communication and test its

effectiveness in real-world scenarios.
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Chapter 5

Improving Compositional Generation with

Diffusion Models Using Lift Scores

We introduce a novel resampling criterion using lift scores, for improving compositional

generation in diffusion models. By leveraging the lift scores, we evaluate whether generated

samples align with each single condition and then compose the results to determine whether the

composed prompt is satisfied. Our key insight is that lift scores can be efficiently approximated

using only the original diffusion model, requiring no additional training or external modules. We

develop an optimized variant that achieves minimal computational overhead during inference

while maintaining effectiveness. Through extensive experiments, we demonstrate that lift scores

significantly improve compositional generation across 2D synthetic data, CLEVR position tasks,

and text-to-image synthesis.

5.1 Introduction

Despite the success of diffusion models in generating high-quality images [153, 64,

121, 155], they sometimes fail to produce coherent and consistent results when the condition
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is complex or involves multiple objects [68, 48, 24]. This limitation is particularly evident in

tasks that generate the images with specific combinations of attributes or objects, where the

generated samples may only partially satisfy the conditions or exhibit inconsistencies across

different attributes.

To mitigate this issue, several methods have been proposed to improve the compositional

generation with diffusion models. These methods can be described as 2 main categories: (1)

training-based methods, which train or finetune the diffusion model to improve its ability to gen-

erate samples that satisfy complex prompts [68, 7], and (2) training-free methods, which either

refine the sampling process, or apply rejection sampling to refine the generated samples without

modifying the underlying model [48, 24]. These 2 categories of methods are not necessarily

mutually exclusive, and they can be combined to achieve better performance.

We introduce CompLift, a training-free rejection criterion for improving compositional

generation in diffusion models. The concept of lift score [19] builds on a simple observation: if

a generated sample truly satisfies a condition, the model should perform better at denoising it

when given that condition compared to unconditional denoising. This insight leads to an efficient

criterion for accepting or rejecting samples that requires minimal computational overhead. Similar

to Diffusion Classifier [98], we show that lift scores can be efficiently approximated using only

the original diffusion model’s predictions, requiring no additional training or external modules.

By decomposing the satisfaction of a complex prompt into the satisfaction of multiple simpler sub-

conditions using lift scores, our approach can boost the model’s alignment with complex prompts

without changing the sampling process. Through extensive experiments on 2D synthetic data,

CLEVR position tasks, and text-to-image generation, we demonstrate that CompLift significantly

improves compositional generation while maintaining computational efficiency.

Contributions. Our contributions are threefold: ❶ We introduce CompLift, as a novel resampling

criterion using lift scores for compositional generation, requiring minimal computational overhead

and no additional training (Section 5.3). ❷ We explore the design space of CompLift, including
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noise sampling strategies, timestep selection, and caching techniques to optimize computational

efficiency (Section 5.4). ❸ We scale our approach to text-to-image generation, demonstrating its

effectiveness in improving compositional generation in this challenging domain (Section ??).

5.2 Related Work

Recent studies have revealed significant limitations in diffusion models [36] for handling

compositional generation, particularly as missing objects, incorrect spatial relationships, and

attribute inconsistencies [68, 48, 24].

Current approaches to address these challenges fall into several categories. One line of

work leverages the cross-attention mechanisms, modifying attention values during synthesis to

emphasize overlooked tokens [48, 24, 175, 174]. Another approach introduces layout control for

precise spatial arrangement of objects [49, 27]. While effective, these methods require specific

model architectural knowledge, unlike our model-agnostic approach.

The diffusion process itself can also be modified to improve compositional generation.

Composable Diffusion [105] guides generation by combining individual condition scores. Dis-

criminator Guidance [86] employs an additional discriminator to reduce the distribution mismatch

of the generated samples. Recent methods introduce advanced sampling techniques like Markov

Chain Monte-Carlo [41], Restart Sampling [178], rejection sampling [120], and particle filtering

[106]. We complement these methods by providing a technique that can be integrated without

assumptions about the underlying sampling process.

Most closely related to our work are resampling strategies that operate as either selection

of the final image [80] or search of the initial noise [131, 111]. However, these methods typically

require external models for quality assessment. In contrast, our approach leverages the denoising

properties of the diffusion model itself [98, 26, 90], eliminating the need for additional models.
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5.3 Using Lift Scores for Rejection Sampling

× =

Composable Diffusion + CompLiftGround Truth𝑝1(𝑥) 𝑝2(𝑥)

+ =

- =
⦰ ⦰

Figure 5.1: An illustration of product, mixture, and negation compositional models, and
the improved sampling performance using CompLift. Left to right: Component distributions,
ground truth composed distribution, composable diffusion samples, samples accepted by Com-
pLift. Top: product, center: mixture, bottom: negation. ∅ represents the empty set - no samples
are generated or accepted.

5.3.1 Diffusion Model Preliminaries

Diffusion model is a class of generative models that generate samples by denoising a noisy

input iteratively. Given a clean sample x0, the forward diffusion process q(xt |xt−1) sequentially

adds Gaussian noise to xt−1 at each timestep t, whereas the learned reverse diffusion process

pθ(xt−1|xt ,c) denoises xt to reconstruct xt−1, optionally conditioned on a condition c. The

conditional probability of x0 can be defined as:

pθ(x0|c) =
∫
x1:T

p(xT )
T

∏
t=1

pθ(xt−1|xt ,c)dx1:T ,

where p(xT ) is typically a standard Gaussian N (0,I).

The diffusion model is often parameterized as a neural network εθ to represent the

denoising function. Using the fact that q(xt |x0) := N (xt ;
√

ᾱtx0,(1− ᾱt)I), the model is
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Algorithm 8 Rejection with CompLift

1: Input: test sample x0, condition {ci}n
i=1, # of trials T , algebra A

2: Initialize Lift[ci] = list() for each ci
3: for trial j = 1, . . . ,T do
4: Sample t ∼ [1,1000]; ε∼N (0, I)
5: xt =

√
ᾱtx0 +

√
1− ᾱtε

6: for condition ck ∈ {ci}n
i=1 do

7: lift j(x0|ci) = ∥ε− εθ(xt ,∅)∥2−∥ε− εθ(xt ,ck)∥2

8: Lift[ck].append(lift j(x0|ci))
9: {lift(x0|ci)}n

i=1 = {mean(Lift[ci])}n
i=1

10: return Compose({lift(x0|ci)}n
i=1,A) ▷ Table 5.1

trained by maximizing the variational lower bound (VLB) of the log-likelihood of the data, which

can be approximated as the Evidence Lower Bound (ELBO), i.e., diffusion loss:

log pθ(x0|c)≥ Eq

[
log

pθ(x0:T ,c)

q(x1:T |x0)

]
=−Eε,t

[
wt∥ε− εθ(xt ,c)∥2]+C.

Following the previous works [64, 98, 26], we set wt = 1 for all t as it achieves good

performance in practice.

5.3.2 Approximating Lift Scores

Given a sample x, we wish to check whether it aligns with a condition c. In other words,

we want to see how well the association x has with c. This brings us to the concept of lift, which

is an existing concept in data mining:

lift(x|c) := log
p(c|x)
p(c)

= log
p(x,c)

p(x)p(c)
= log

p(x|c)
p(x)

. (5.1)

We note that the definition of lift scores is slightly different from the traditional data mining

definition [19] as it is defined in the logarithmic space. We abuse the notation since it is easier to
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implement in the logrithm space, and we call it lift score throughout this paper.

One perspective to understand lift scores is to regard p as a perfectly-learned classifier.

If x is an arbitrary unknown sample, this classifier tries its best to predict the probability of x

belonging to class c as p(c). However, once x is given as a known sample, the classifier will

utilize the information in x to increase its prediction accuracy, as p(c|x). If x has any positive

association with c, we would expect p(c|x)> p(c), which means lift(x|c)> 0.

Approximating the lift scores. In preliminaries, we see that both p(x|c) and p(x) can be

approximated using ELBO:

p(x|c)≈ exp(−Et,ε||ε− εθ(xt ,c)||2 +C), (5.2)

p(x)≈ exp(−Et,ε||ε− εθ(xt ,∅)||2 +C). (5.3)

Notice that the constant C is independent of x and c, therefore dividing p(x|c) by p(x) cancels

C. This gives us the approximation of lift in the form of log p(x|c)
p(x) :

lift(x|c)≈ Et,ε{||ε− εθ(xt ,∅)||2−||ε− εθ(xt ,c)||2}. (5.4)

Equation 5.4 gives us another explanation of lift scores from a denoising perspective:

if c is positively associated with x, then given a sample xt by adding noise to x, a diffusion

model should improve the reconstruction quality to x from the noisy xt if c is given to the model,

compared to the reconstruction quality of xt when c is not known. Hence, the criterion of

CompLift for single condition is:

π(x|c) =


1 (accept) if Equation 5.4> 0;

0 (reject & resample) if Equation 5.4≤ 0.
(5.5)

The Compose for multiple conditions is straightforward, where we construct a set of
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Table 5.1: Examples of Compose for multiple conditions.

Type Algebra Acceptance Criterion

Product c1∧c2 mini∈[1,2] lift(x|ci)> 0

Mixture c1∨c2 maxi∈[1,2] lift(x|ci)> 0

Negation ¬c1 lift(x|c1)≤ 0

constraints to satisfy, then compose them (see examples in Table 5.1).

We describe the Compose algorithm used in our experiments in Algorithm 9. The algo-

rithm takes as input a set of lift scores {lift(x0|ci)}n
i=1 and an algebra A , and returns a boolean

value indicating whether the composed prompt is satisfied. The algorithm first initializes a dictio-

nary s to store partial results. It then converts the algebra A to conjunctive normal form (CNF)

and iterates over each disjunction Ak in A . For each literal Lm in Ak, the algorithm calculates the

lift score based on the input lift scores and updates s[Ak]. Finally, it returns whether the minimum

of the results is greater than zero.

Algorithm 9 Compose for multiple algebraic operations

1: Input: lift scores {lift(x0|ci)}n
i=1, algebra A

2: Initialize s = {} ▷ Dictionary to store partial results
3: Convert A to conjunctive normal form (CNF)
4: for disjunction Ak ∈ A do
5: Initialize s[Ak] = 0
6: for literal Lm ∈ Ak do
7: if Lm is of form ci then
8: s[Ak] = max(lift(x0|ci),s[Ak])
9: else if Lm is of form ¬ci then

10: s[Ak] = max(−lift(x0|ci),s[Ak])
11: return minAk∈A(s[Ak])> 0

5.4 Design Space of CompLift

We present the naive version of CompLift in Algorithm 8, where the lift score in Equation

5.4 is estimated using Monte-Carlo sampling. In this section, we discuss design choices of
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CompLift. We wish to answer the following questions:

(Section 5.4.1) How does the noise sampling affect the estimation accuracy of lift scores?

(Section 5.4.2) What role do different timesteps play in the effectiveness of our criterion?

(Section 5.4.3) Can we optimize the computation overhead via caching strategies?

5.4.1 Effect of Noise

In Line 7 in Section 8, we choose to share the ε when estimating both p(x|c) and p(x).

To validate this design, we conduct the experiment on a 2D synthetic dataset with the following 3

settings:

(1) Independent Noise: We sample two independent noises ε and ε′ for p(x|c) and p(x),

respectively.

(2) Shared Noise for Each Trial: We share the noise ε between p(x|c) and p(x), each trial

samples a new noise.

(3) Shared Noise Across All Trials: We share the noise ε across all trials for both p(x|c) and

p(x).

In Section 5.2, we observe that sharing noise for each trial is mostly robust over the

number of trials, which is consistent with the conclusion in Diffusion Classifier [98]. We choose

to use this design as the default setting. The independent strategy increases the accuracy with

more trials, especially for mixture and negation algebra. We also find a small regression in

the sharing strategies in negation tasks, hypothetically due to the conservativeness of the Lift

criterion.

5.4.2 Effect of Timesteps

Similar to Diffusion Classifier [98], we found that in most cases, if diffusion model εθ is

trained with uniform timestep sampling, sampling the timestep uniformly for ELBO estimation
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Figure 5.2: The accuracy of CompLift with different noise sampling strategies on 2D
synthetic dataset. See Section 5.4.1.

(Line 4 in Algorithm 8) is sufficient.

More surprisingly, we also found that the timestep for ELBO estimation needs importance

sampling when the diffusion model is trained under importance sampling, where the importance

sampling enhances the stability of optimizing LVLB [121]. In particular, we discovered a pretrained

model for CLEVR Position dataset [105] requires the importance sampling because of the above

reason. We show the effect in Figure 5.3.

This suggests that the timestep sampling of ELBO estimation to stay consistent with the

sampling strategy at training stage. Therefore, we choose to use importance sampling for the

CLEVR pretrained model, and use uniform sampling as default for other tasks, i.e., 2D dataset

and text-to-image.

5.4.3 Improving Computational Efficiency with Cached Prediction

In the naive version of CompLift in Algorithm 8, the algorithm requires (n+1) ·T times

of forward passes for n conditions. To reduce the computational cost, we propose caching the
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Figure 5.3: Accuracy of acceptance/rejection over a single sampled timestep for pretrained
model [105] on CLEVR Position dataset. We found that models trained with importance
sampling require importance sampling for ELBO estimation.

diffusion model’s intermediate predictions.

We find that we can reuse the prediction of εθ(xt ,∅) and {εθ(xt ,ci)}n
i=1 at intermediate

timestep t during the generation process of x0. Note that the unconditional prediction εθ(xt ,∅)

is typically precomputed for generation with classifier-free guidance (CFG) [65]. For conditional

prediction {εθ(xt ,ci)}n
i=1, they are precomputed under the Composable Diffusion framework

[105]. Under this framework, we can reduce the number of extra forward passes from (n+1) ·T

to 0.

For more general framework, computing the conditional predictions {εθ(xt ,ci)}n
i=1 as

additional computation on-the-fly during generation is beneficial for caching in Section 5.4.3.

With a sufficient amount of GPU memory, this operation typically would not bring extra time

overhead, since all computations can be done in parallel to the original generation task. In this

context, we can reduce the number of extra forward passes to n ·T , if CFG is used.

We provide the optimized version of CompLift in Algorithm 10. When running Line 4 in

Algorithm 8, ε is not i.i.d. any more, but computed as ε = (xt−
√

ᾱtx0)/
√

1− ᾱt instead using

the cached xt . Another difference is that T is constrained to be exactly the same as a number

of inference steps N. In practice, we found that these 2 changes do not lead to a significant
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Algorithm 10 Optimized Rejection with Cached CompLift

1: Input: conditions {ci}n
i=1, algebra A , # of reverse timesteps N

2: Initialize xT ∼N (0, I)
3: for timestep t j ∈ [tN , tN−1, . . . , t1] do
4: ▷ Standard generation process
5: xt j−1 = step(xt j ,εθ,{ci}n

i=1)
6: ▷ Add predictions to cache
7: if classifier-free guidance then
8: Add precomputed εθ(xt j ,∅) to cache
9: if Composable Diffusion then

10: Add precomputed {εθ(xt j ,ci)}n
i=1 to cache

11: Add xt j to cache
12: run Algorithm 8 with cache, where # of trials T = N, and xt j , εθ(xt j ,∅), and εθ(xt j ,ci) are

reused.

performance drop as long as T is not too small. We show the comparison of the running time on

2D synthetic task in Figure 5.5. The overhead introduced by the cached CompLift is negligible

for the Composable Diffusion baseline [105]. With enough GPU memory, our method can be

further optimized to the latency of only 1 forward pass by parallelization, while MCMC methods

[41] require sequential computation.
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CompLift
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1Figure 5.4: Accepted and rejected SDXL examples using CompLift criterion. Objects in
blue are composed through the given prompts.
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Figure 5.5: Average running time on 2D synthetic dataset. T indicates number of trials.
Note that our methods can be further optimized to the latency of only 1 forward pass with
parallelization, while MCMC methods require sequential computation.

5.5 Scaling to Text-to-Image Generation

We mainly consider the problem of missing objects in the text-to-image compositional

task. Given multiple objects {ci}n
i=1 to address simultaneously, a prominent error of diffusion

models is that the generated images sometimes do not include object(s) {c j| j ∈ [1,n]} mentioned

in the text.

5.5.1 Counting Activated Pixels as Existence of Objects

Our approach is to count the number of activated pixels in the latent space to determine

the existence of objects. A pixel at position [a,b] in the latent z is activated for condition ci,

if lift(z,ci)[a,b] > 0. Here we regard lift(z,ci) as a matrix with the same shape of z. This is

achieved by averaging only over the timestep t dimension and not the feature dimension when

calculating the mean in Monte-Carlo estimation, i.e., Line 12 in Figure 8.

Definition of CompLift in image space. In particular, an object is considered to exist in the image
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Figure 5.6: Replacing ε in the differential loss of Equation 5.4 by εθ(x,ccompose) reduces
the estimation variance. Prompt: a black car and a white clock. Pixels with negative scores
are masked out.

x, if the number of activated pixels in its latent z is greater than threshold τ:

lift(x,ci) := ∑
a,b∈[1,m]

I(lift(z,ci)[a,b] > 0)− τ, (5.6)

where z is the latent in the shape of (m,m). τ is the only hyperparameter that needs to be tuned

for our approach. We set it as τ = 250 for all experiments.

Equation 5.6 of CompLift for images makes the identification of objects more robust and

interpretable. The rationale is that the activated pixels in the latent space are more likely to be

the ones that correspond to the objects in the image. We present examples in Figure 5.7. As

illustrated, we can see a clear consistency between the pixels activated by lift(z,ci) in the latent

and the object ci in the image. Since the object often occupies only a fraction of the image, simply

taking the mean along the feature dimension as Equation 5.4, may not be as effective as Equation
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5.6, as those unrelated pixels with lift(z,ci)< 0 will dominate the averaged score.

5.5.2 Reduce Variance of ELBO Estimation

Our initial attempt is to see whether the pixels in the latent z align with the lift score.

Intuitively, we expect for an arbitrary pixel with position [a,b] from a target object ci, its lift

score lift(z,ci)[a,b] should be greater than 0 in most cases. However, we found that the estimation

variance is high when applying Equation 5.4 directly. As illustrated in the 3rd column in Figure

5.6, the lift score is noisy overall.

We hypothesize that the sampled noise ε in the L2 loss in Equation 5.4 is a major factor of

the variance. In the ELBO estimation, we first add the noise to the image and make predictions,

similar to adversarial attacks. The model may or may not have a good prediction on the new

noisy image, therefore, the model’s bias might lead to unstable estimation. To reduce the variance,

we can find a candidate to replace ε when calculating the L2 loss in Equation 5.4. Ideally, the

candidate is close enough to ε, but inherently cancels out the bias from the model’s prediction.

Our finding is that the composed score εθ(z,ccompose) is a good candidate to replace ε,

where ccompose is the original composed prompt to generate latent z. In the example of Figure 5.6,

ccompose is “a black car and a white clock”. Since εθ(z,ccompose) mainly guides the generation

process of z, it is reasonable to assume that it is good at reconstructing the original latent,

therefore is close to ε. Furthermore, since εθ(z,ccompose) and εθ(z,ci) (or εθ(z,∅)) come from

the same model’s prediction, it helps cancel the model’s bias. The results are shown in the 2nd

column of Figure 5.6. We observe that the variance is significantly reduced, and the activated

pixels are more consistent with the objects.

The improved lift score for condition c and latent z is:

lift(z,c) := Et,ε{||εθ(zt ,ccompose)− εθ(zt ,∅)||2

−||εθ(zt ,ccompose)− εθ(zt ,c)||2}
(5.7)
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Figure 5.7: CompLift for text-to-image compositional task. Pixels with negative scores are
masked out. From left to right: original image x, the latent z, the heatmaps of lift score lift(z,ci)
for each object component ci. The border color represents the corresponding object.

The combination of Equation 5.6 and Equation 5.7 represents our final criterion for text-

to-image compositional task. We first estimate the lift score for each pixel in the latent space

via Equation 5.7, and then count the activated pixels to determine the existence of objects in the

image via Equation 5.6. Note that for the improved lift score, the computational overhead is

(n+2) ·T forward passes, if no caching or parallelization is used.

5.5.3 Full Algorithms

We combine Algorithm 8, Equation 5.6, and Equation 5.7, and provide the full algorithm

of CompLift for t2i tasks.

Similar to the vanilla version, we combine Algorithm 10, Equation 5.6, and Equation 5.7,

and provide the full algorithm of Cached CompLift for t2i tasks. The algorithm is divided into
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Algorithm 11 Text-to-Image Generation with CompLift

1: Input: image x0, conditions {ci}n
i=1, composed prompt ccompose, # of trials T , threshold τ

2: Initialize PixelLift[ci] = list() for each ci
3: Encode x0 to latent z0 using VAE encoder
4: for trial j = 1, . . . ,T do
5: Sample t ∼ [1,1000]; ε∼N (0, I)
6: zt =

√
ᾱtz0 +

√
1− ᾱtε

7: εcompose = εθ(zt ,ccompose) ▷ Get composed prediction
8: for condition ck ∈ {ci}n

i=1 do
9: lift j(z0|ck) = ∥εcompose− εθ(zt ,∅)∥2−∥εcompose− εθ(zt ,ck)∥2

10: PixelLift[ck].append(lift j(z0|ck))
11: for condition ck ∈ {ci}n

i=1 do
12: lift(z0,ck) = mean(PixelLift[ck]) ▷ Average over trials
13: lift(x0,ck) = ∑

a,b∈[1,m]
I(lift(z0,ck)[a,b] > 0)− τ

14: return Compose({lift(x0|ci)}n
i=1,A) ▷ Run Algorithm 9

two parts: Algorithm 12 and Algorithm 13. The first part caches the latent vectors and predictions

at each timestep, while the second part calculates the lift scores using the cached values.

5.6 Experiments

In the following sections, we evaluate the effectiveness of our CompLift criterion on 2D

synthetic dataset, CLEVR Position dataset, and text-to-image compositional task.

5.6.1 2D Synthetic Dataset

Experiment setup. We train diffusion models on 2D synthetic dataset with 3 types of composi-

tional algebra: product, mixture, and negation. We use the same architecture of networks from

[41], which regards the diffusion model εθ as ∇xEθ. Eθ is a 3-layer MLP and trained with the

same loss function as the standard diffusion model by minimizing Et,ε||∇xEθ(xt , t)− ε||22. An

individual model is trained for each single distribution with 8000 samples. We use the diffusion

process of 50 timesteps for both training and inference, which means the cached version of
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Algorithm 12 Cache Values During Text-to-Image Generation

1: Input: conditions {ci}n
i=1, composed prompt ccompose, # of timesteps N

2: Initialize zT ∼N (0, I)
3: Initialize Cache= {} ▷ Dictionary to store intermediate values
4: for timestep t j ∈ [tN , tN−1, . . . , t1] do
5: ▷ Standard generation process
6: zt j−1 = step(zt j ,εθ,ccompose)
7: ▷ Add predictions to cache
8: Cache[t j].latent= zt j

9: Cache[t j].null_pred= εθ(zt j ,∅)

10: for condition ck ∈ {ci}n
i=1 do

11: Cache[t j].cond_pred[ck] = εθ(zt j ,ck)

12: Cache[t j].compose_pred= εθ(zt j ,ccompose)

13: Decode z0 to image x0 using VAE decoder
14: return x0, Cache

Algorithm 13 CompLift Using Cached Values

1: Input: image x0, conditions {ci}n
i=1, Cache, threshold τ

2: Initialize PixelLift[ci] = list() for each ci
3: Encode x0 to latent z0 using VAE encoder
4: for timestep t j in Cache do
5: zt j = Cache[t j].latent
6: εcompose = Cache[t j].compose_pred
7: for condition ck ∈ {ci}n

i=1 do
8: lift j(z0|ck) = ∥εcompose − Cache[t j].null_pred∥2 − ∥εcompose −

Cache[t j].cond_pred[ck]∥2

9: PixelLift[ck].append(lift j(z0|ck))
10: for condition ck ∈ {ci}n

i=1 do
11: lift(z0,ck) = mean(PixelLift[ck]) ▷ Average over timesteps
12: lift(x0,ck) = ∑

a,b∈[1,m]
I(lift(z0,ck)[a,b] > 0)− τ

13: return Compose({lift(x0|ci)}n
i=1,A) ▷ Run Algorithm 9
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Table 5.2: Quantitative results on 2D compositional generation. Acc (%) means accuracy, and
CD means Chamfer Distance.

Method Product Mixture Negation
Acc ↑ CD ↓ Acc ↑ CD ↓ Acc ↑ CD ↓

Composable Diffusion 56.5 0.061 70.7 0.042 7.9 0.207

EBM (ULA) 51.7 0.076 71.8 0.044 11.4 0.186
EBM (U-HMC) 56.3 0.036 73.1 0.063 9.4 0.269
EBM (MALA) 62.6 0.054 73.8 0.036 6.8 0.203
EBM (HMC) 64.8 0.021 73.7 0.078 4.2 0.340

Composable Diffusion
+ Cached CompLift

99.5 0.009 86.5 0.023 62.0 0.137

Composable Diffusion
+ CompLift (T = 50)

99.1 0.015 98.6 0.029 75.0 0.154

Composable Diffusion
+ CompLift (T = 1000)

99.9 0.009 100.0 0.023 78.7 0.131

CompLift uses 50 trials. The vanilla version of CompLift uses 50 or 1000 trials. All the methods

generate 8000 samples for inference. For CompLift algorithms, we use Composable Diffusion

[105] to generate the initial 8000 samples, then apply the CompLift criterion to accept or reject

samples. We include MCMC methods as additional baselines [41].

Metrics. We define that a sample satisfies a uniform distribution if it falls into the nonzero-density

regions. A sample satisfies Gaussian mixtures if it is within 3σ of any Gaussian component,

where σ is the standard deviation of the component. The negation condition is satisfied, if the

above description is not satisfied. We calculate the accuracy of the algorithm on a composed

distribtuion, as the percentage of generated samples that satisfy all the conditions. We use the

Chamfer Distance to measure the similarity between the generated samples and the dataset, as we

find it an efficient and general metric, applicable to all 3 kinds of algebra.
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It is genuinely hard to define a universal εθ(xt ,∅) for the 2D synthetic task, since in

this task, the 2D distribution can be of arbitrary shapes. Therefore, we find an effective strategy

by defining εθ(xt ,∅) := αεθ(xt ,c) with α = 0.9 for each c. Consequently, the lift criterion is

simplified as Et,ε{||ε−αεθ(xt ,c)||2−||ε− εθ(xt ,c)||2}. We find this criterion is surprisingly

effective for this 2D task. One hypothesis is that if x has some correlation with c, then a well-

trained εθ should be good at predicting the noise εθ(xt ,c) that is closer to ε and further from 0 in

most cases.

The overall result is shown in Table 5.2. We observe that the CompLift criterion is effective

in all 3 types of compositional algebra. Compared to MCMC methods, rejection with CompLift

criterion is able to generate empty sets by construction.

× =

Composable Diffusion + CompLiftGround Truth𝑝1(𝑥) 𝑝2(𝑥)

=

=

⦰ ⦰

×

×
Figure 5.8: 2D synthetic result for product composition.
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Figure 5.9: 2D synthetic result for mixture composition.
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Figure 5.10: 2D synthetic result for negation composition.

In Figures 5.8, 5.9, and 5.10, we provide additional visualizations of the 2D synthetic

distribution compositions. The figures show the generated samples for product, mixture, and

negation compositions, respectively.

Table 5.3 shows the detailed results for the 2D synthetic distribution compositions. We

provide the accuracy (Acc), Chamfer distance (CD), and acceptance ratio (Ratio) of samples using

the CompLift algorithm for each composition. We find that Composable Diffusion enhanced with

CompLift (T = 1000) consistently outperforms baseline methods across all scenarios, achieving

perfect or near-perfect accuracy in many cases. While all methods perform reasonably well with

Product algebra, performance generally degrades with Mixture and especially with Negation
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Table 5.3: Quantitative results on 2D composition. CompDiff: Composable Diffusion, S1-S3:
Scenarios 1-3. All the CompLift criterion are applied to the CompDiff samples.

Algebra Method S1 S2 S3
Acc ↑ CD ↓ Ratio Acc ↑ CD ↓ Ratio Acc ↑ CD ↓ Ratio

Product

EBM (ULA) 80.3 0.010 - 74.7 0.141 - 0.0 - -
EBM (U-HMC) 84.9 0.007 - 83.9 0.065 - 0.0 - -
EBM (MALA) 95.8 0.005 - 92.0 0.103 - 0.0 - -
EBM (HMC) 95.7 0.003 - 98.8 0.039 - 0.0 - -
CompDiff 81.9 0.030 - 87.6 0.093 - 0.0 - -
+ Cached CompLift 98.5 0.005 - 100.0 0.013 - 100.0 - -
+ CompLift (T =50) 97.4 0.011 - 100.0 0.019 - 100.0 - -
+ CompLift (T =1K) 99.8 0.005 79.3 100.0 0.013 55.1 100.0 - 0.0

Mixture

EBM (ULA) 28.2 0.062 - 87.9 0.021 - 99.2 0.049 -
EBM (U-HMC) 30.5 0.060 - 89.5 0.020 - 99.5 0.108 -
EBM (MALA) 28.4 0.059 - 92.9 0.018 - 100.0 0.030 -
EBM (HMC) 28.7 0.059 - 92.3 0.019 - 100.0 0.157 -
CompDiff 22.1 0.067 - 90.0 0.025 - 99.9 0.033 -
+ Cached CompLift 61.0 0.030 - 98.5 0.022 - 100.0 0.018 -
+ CompLift (T =50) 95.7 0.020 - 100.0 0.041 - 100.0 0.026 -
+ CompLift (T =1K) 100.0 0.017 9.2 100.0 0.038 56.8 100.0 0.014 57.1

Negation

EBM (ULA) 28.7 0.129 - 5.6 0.244 - 0.0 - -
EBM (U-HMC) 25.9 0.206 - 2.3 0.333 - 0.0 - -
EBM (MALA) 17.8 0.150 - 2.7 0.257 - 0.0 - -
EBM (HMC) 12.4 0.258 - 0.2 0.421 - 0.0 - -
CompDiff 11.8 0.191 - 11.7 0.222 - 0.0 - -
+ Cached CompLift 40.4 0.152 - 45.6 0.123 - 100.0 - -
+ CompLift (T =50) 68.6 0.150 - 56.4 0.158 - 100.0 - -
+ CompLift (T =1K) 78.7 0.127 3.2 57.2 0.135 6.3 100.0 - 0.0

algebra, where CompLift still maintains a significant edge over other approaches. The results

demonstrate that CompLift effectively improves both accuracy and sample quality (measured

by Chamfer Distance), though this comes with varying sampling efficiency as shown by the

acceptance ratios.

Figure 5.11 shows the histograms of the CompLift scores for each composed 2D synthetic

distributions following the order in the Figure 5.8, Figure 5.9, and Figure 5.10, where the groud-

truth positive data points are in color blue, and the negative data points are in color orange. We

observe that ❶ positive data samples have a higher CompLift score and negative data samples (i.e.,
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Figure 5.11: Histograms of the CompLift scores for 2D synthetic distribution compositions.
The histograms show the distribution of the lift scores for the three compositions. The samples
are 8000 samples generated from Composable Diffusion. The x-axis represents the composed
lift scores using Table 5.1, and the y-axis represents the number of samples.

the data sample out of the desired distribution) have a lower CompLift score, and ❷ the boundary

condition of 0 is a good threshold to separate the positive and negative data samples for product.

For mixture and negation, the 0 boundary condition is less effective and slightly conservative, but

the positive data samples still have a higher CompLift score than the negative data samples, and

the performance still achieves better when applying CompLift to the baseline methods.

5.6.2 CLEVR Position Dataset

Experiment setup. The CLEVR Position dataset [76] is a dataset of rendered images with

a variety of objects placed in different positions. Given a set of 1-5 specified positions, the

model needs to generate an image that contains all objects in the specified positions (i.e., product

algebra). We use the pretrained diffusion model from [105]. The model is trained with importance
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Figure 5.12: Examples of samples on CLEVR Position dataset.

sampling [121]. Thus, we use importance sampling for ELBO estimation. In particular, we find

that sampling t solely as t = 928 is sufficient to give us a decent performance by observing Figure

5.3. This leads to a computational efficiency via only 1 trial at t = 928 for both vanilla and cached

versions of CompLift. For each composition of conditions, our algorithm uses Composable

Diffusion [105] to generate the initial 10 samples, then apply the Lift criterion to accept or reject

samples. We test all methods with 5000 combinations of positions with various numbers of

constraints. All methods use classifier-free guidance with a guidance scale of 7.5 [65].

For the MCMC implementation, we use the same PyTorch samplers shared by Du et al.

[41] 1. However, we find it hard to reproduce the result of the MCMC method on the CLEVR

Position Task. The generated objects in the synthesized images are often in strange shapes that are

dissimilar from the trained data. We suspect that the MCMC method may require more careful

1https://github.com/yilundu/reduce_reuse_recycle/blob/main/anneal_samplers.py
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Figure 5.13: Quantitative results on CLEVR Position dataset.

tuning of hyperparameters, as not all hyperparameters are mentioned as the optimal ones in the

codebase. Therefore, we remind the readers that the results of the MCMC method on the CLEVR

Position Task in this section should be interpreted with caution - they mainly serve as references

and do not represent the optimal results.

Metrics. We use Segment Anything Model 2 (SAM2) [137] as a generalizable verifier, to check

whether an object is in a specified position. We first extract the background mask, which is the

mask with the largest area, using the automatic mask generator of SAM2, then label a condition

as satisfied if the targeted position is not in the background mask. We find this new verifier is

more robust compared to the pretrained classifier in Liu et al. [105]. As shown in Figure 5.15,

the pretrained classifier often fails to generalize when more shapes are required to be composed,

while the SAM2 verifier can effectively detect the samples due to the fact that it is pretrained

with massive segmentation dataset. We calculate the accuracy as the ratio of samples that satisfy

all given conditions. To calculate FID, we compare the generated samples to the training set
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provided by Liu et al. [105].

Figure 5.14: Example of failed samples on CLEVR Position dataset using MCMC. The
generated objects in the synthesized images are often in strange shapes which is dissimilar from
the trained data. We suspect that the MCMC method may require a more careful tuning of
hyperparameters. As a result, we remind the readers that the results of the MCMC method on
the CLEVR Position Task should be interpreted with caution.

We show the quantitative results in Figure 5.13. We observe that the CompLift criterion

is able to generate samples that satisfy all conditions more effectively than the baseline. As the

number of constraints increases, the performance of the baseline drops significantly, while the

performance of the CompLift criterion remains relatively stable. We also show some examples in

Figure 5.12. Meanwhile, we observe some regressions in the FID scores. We hypothesize that the

rejection reduces the diversity of samples, which results in the higher FID scores, since the image

quality has no significant difference from Composable Diffusion.

Table 5.4: Quantitative accuracy results on CLEVR compositional generation (higher is better).

Method Combinations
1 2 3 4 5

Composable Diffusion 100.0 100.0 99.0 90.8 78.7

EBM (U-HMC) 82.0 66.0 34.0 24.0 11.0
EBM (ULA) 86.0 74.0 48.0 27.0 19.0

Composable Diffusion
+ Cached CompLift

100.0 100.0 99.7 91.6 84.3

Composable Diffusion
+ CompLift

100.0 100.0 99.9 97.5 90.3

Nevertheless, we are still interested in how the methods perform using the pretrained

classifier from Liu et al. [105]. In Table 5.6, we find that the Composable Diffusion model with

CompLift consistently outperforms the baseline methods across all combinations, and achieves a

nonzero accuracy in the most challenging 5 object composition setting.
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Table 5.5: FID scores on CLEVR compositional generation (lower is better).

Method Combinations
1 2 3 4 5

Composable Diffusion 37.6 37.7 38.8 48.8 50.1

EBM (U-HMC) 158.9 139.7 111.3 101.4 84.4
EBM (ULA) 180.9 153.1 122.4 103.9 84.5

Composable Diffusion
+ Cached CompLift

36.8 36.2 36.4 50.2 57.3

Composable Diffusion
+ CompLift

38.2 36.4 40.1 53.2 56.2

Table 5.6: Quantitative accuracy results on CLEVR using the pretrained classifier from
Liu et al. [105].

Method Combinations
1 2 3 4 5

Composable Diffusion 52.7 20.5 3.1 0.3 0.0

EBM (U-HMC) 1.0 0.0 0.0 0.0 0.0
EBM (ULA) 6.0 0.0 0.0 0.0 0.0

Composable Diffusion
+ Cached CompLift

55.7 25.3 6.7 0.4 0.0

Composable Diffusion
+ CompLift

56.2 25.3 5.7 0.7 0.1

5.6.3 Text-to-Image Compositional Task

Experiment setup. We use the pretrained Stable Diffusion 1.4, 2.1, and SDXL [141, 128].

The models are trained with large-scale text-to-image dataset LAION [148]. We use the same

composed prompts as Attend-and-Excite Benchmark [24], which considers 3 classes of composi-

tions - 2 animal categories, 1 animal and 1 object category, and 2 object categories (i.e., product

algebra). There are 66 unique animal combinations, 66 unique object combinations, and 144

unique animal-object combinations. We use the diffusion model to generate 5 initial samples

using each combined prompt, then apply the CompLift criterion to accept or reject samples. For

inference, we use 50 diffusion timesteps, which means the cached version of CompLift uses 50

trials. The vanilla version of CompLift uses 200 trials. We use CFG with a guidance scale of 7.5

for all methods. We fix τ = 250 for all experiments.
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Figure 5.15: More examples of samples on CLEVR Position dataset. We find that the SAM
verifier is more robust and generalizable compared to the pretrained classifier provided by the
Composable Diffusion work [105]. From left to right: the first column shows the original
images, the second column shows the segmentation masks generated by SAM2, the third column
shows the object masks (by excluding the pixels from the background mask), the fourth column
shows the labels given by SAM2, and the fifth column shows the labels given by the pretrained
classifier. The percentage numbers represent the confidence score predicted by the classifier.

Metrics. We use CLIP [134] and ImageResizer [137] to assess the alignment between the

generated images and the prompts. For combination where CompLift is invalid for all generated

samples, we uniformly sample one of the images as the final output. The metrics are averaged

over the samples within each combination class.

The quantitative results are shown in Table 5.7. We observe that with CompLift, the

performance for each version of SD can be boosted to be comparable to their next generation for
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Figure 5.16: The correlation between the number of activated pixels and the CLIP score.
The correlation is calculated using the Pearson correlation coefficient. Each point represents a
generated image. Prompt: a black car and a white clock.

some combination classes. For example, SD 1.4 with CompLift is comparable to the vanilla SD

2.1 on object-animal combinations and object combinations. SD 2.1 with CompLift is comparable

to the vanilla SDXL on animal combinations. Since the CompLift criterion is a training-free

criterion and does not depend on additional verifier, it also shows a novel way of how diffusion

model could self-improve during test time without extra training cost [111].

In Figure 5.18 and Figure 5.19, we provide additional examples of accepted and rejected

images using SDXL + CompLift. We observe that the CompLift algorithm can effectively reject

samples that fail to capture the object components specified in the prompt in general. In addition,

we find that the current CompLift criterion is relatively weak in determining the color attribute,

leading to some accepted images with incorrect colors (e.g., a green backpack and a purple bench).

This suggests that future work could explore more sophisticated criteria to further improve the
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Table 5.7: Quantitative results on Attend-and-Excite Benchmarks [24]. IR means ImageReward
[176].

Method Animals Object&Animal Objects
CLIP ↑ IR ↑ CLIP ↑ IR ↑ CLIP ↑ IR ↑

Stable Diffusion 1.4 0.310 -0.191 0.343 0.432 0.333 -0.684
SD 1.4 + Cached CompLift 0.319 0.128 0.356 0.990 0.345 -0.124
SD 1.4 + CompLift 0.322 0.292 0.358 1.094 0.347 -0.050

Stable Diffusion 2.1 0.330 0.532 0.354 0.924 0.342 -0.112
SD 2.1 + Cached CompLift 0.339 0.880 0.361 1.252 0.354 0.353
SD 2.1 + CompLift 0.340 0.975 0.362 1.283 0.355 0.489

Stable Diffusion XL 0.338 1.025 0.363 1.621 0.359 0.662
SD XL + Cached CompLift 0.341 1.244 0.364 1.687 0.365 0.896
SD XL + CompLift 0.342 1.216 0.364 1.706 0.367 0.890

quality of generated images.

Ablation Study: Correlation of CompLift with CLIP

Additionally, we show the correlation of CompLift with CLIP. In Figure 5.16 and 5.17,

we provide examples of the correlation between CLIP and CompLift for text-to-image generation.

The figures show the generated images for 3 prompts involving a black car and a white clock, a

turtle with a bow and a frog and a mouse. For these prompts, we find that the diffusion models

would typically ignore the clock, bow, and mouse components, leading to low CLIP scores for

many generated images. Meanwhile, we observe a strong correlation between the CLIP and

CompLift scores for these prompts, indicating the effectiveness of CompLift for complex prompts.

For the images with low CLIP scores, they typically have lower number of activated pixels using

CompLift for these ignored objects.

One note is that for the a turtle with a bow prompt, we observe that most of the images

would fail to generate the bow component. This explains why many data samples have low CLIP

scores on the left part of Figure 5.17. However, the CompLift algorithm can effectively capture
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the bow component, and reject those samples with low CLIP score.
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Figure 5.17: More examples of correlation between CLIP and CompLift. Prompt to generate
left images: a turtle with a bow. Prompt to generate right images: a frog and a mouse.

5.7 Conclusion

We propose a novel rejection criterion CompLift for compositional tasks, which is based on

the difference of the ELBO between the generated samples with and without the given conditions.

We show that the CompLift criterion is effective on a 2D synthetic dataset, CLEVR Position

dataset, and text-to-image compositional task. We also demonstrate that the CompLift criterion

can be further optimized with caching strategies. In the future, we plan to explore the potential of

the CompLift criterion on more complex compositional tasks, such as video generation and music

generation.
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CompLift for text-to-image generation.
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5.8 Impact Statement

We introduce CompLift, a novel resampling criterion leveraging lift scores to advance the

compositional capabilities of diffusion models. While we mainly focus on efficient approximation

of lift scores without additional training and improving compositional generation, we acknowledge

several broader implications, similar to other works on diffusion models and image generation.

As we demonstrate in this work, CompLift could benefit image generation applications

through more reliable generation of complex, multi-attribute outputs. On the positive side,

CompLift could enhance creative tools through more precise and reliable image generation,

potentially enabling more sophisticated applications in art, design, and entertainment. However,

like other works on diffusion models, CompLift could potentially be misused to create misleading

or deepfake contents, if not properly managed [117]. These contents could be more consistent with

the intention of the user, leading to potential societal harms such as scams and misinformation.

Additionally, biases in training data could be amplified through the resampling process, potentially

perpetuating societal biases and underrepresentation in the generated images. We encourage work

building on our approach to evaluate not only technical performance but also the risks and ethical

implications of the approach.
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Chapter 6

Conclusion and Future Directions

In this disseration, we present a unified framework for compositional value-based methods

for both planning and generative modeling. otivated by the challenge of generalizing from simple

training settings to complex, high-dimensional, or relationally structured tasks, we proposed a

family of methods that construct value functions or scoring mechanisms with inherent compo-

sitionality. These methods enable generalization through logical or graph-based abstractions,

providing an alternative to monolithic training on large datasets.

We demonstrate the advantage of this framework with 4 applications, i.e., sampling-based

motion planning, multi-agent pathfinding, multi-agent safety enforcement, and compositional

generative modeling. In sampling-based planning, our GNN-based path explorer and smoother

significantly reduced the computational cost of collision checking on arbitrarily sampled graphs.

In multi-agent pathfinding, our Graph Transformer heuristic generalized to team sizes multiple

times larger than those seen during training, while maintaining bounded suboptimality. In safe

multi-agent navigation, control admissibility models learned through GNNs enforced safety

constraints across novel configurations and large agent populations. Finally, in the generative

modeling domain, our lift-score-based rejection sampling technique improved controllability in

diffusion models, particularly for rare and structured combinations of object constraints.
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The shared principle among these applications is to leverage compositional structure in

problem domains. Rather than relying solely on increased data or model capacity, we introduce

inductive biases into the learning process via graph structures, attention mechanisms, and logical

decompositions for better generalization and data efficiency. This approach also unlocks exciting

possibilities for zero-shot transfer, scalability to larger systems, and integration with classical

data-driven routines.

Future Directions

We would like to point out several promising directions for future research:

1. Understand When Compositionality is (Not) Useful. While we show the compositional

framework is useful across various applications, it is important to understand the limitations

and scenarios where compositionality may not be beneficial. Investigating the types

of tasks or environments where compositional structures lead to improved performance

versus those where they do not could provide insights into the underlying principles of

generalization in AI systems. This understanding could inform future research on when to

apply compositional methods and when alternative approaches may be more effective.

2. Find How to Compose Automatically. One limitation of the current framework is that the

compositional structures are often hand-engineered or designed based on domain knowl-

edge. With foundation models like Large Language Models and LLM-based agents, there

is potential to find these decomposable structures and the basic compositional component

directly given the description of the task. This could lead to more adaptive and flexible

compositional systems that can automatically discover useful abstractions.

3. Continue Learning During Deployment. When deploying an already-learned compo-

sitional framework during inference, it is possible that the online data is also helpful to
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improve the performance of the value function component. Developing methods for online

or continual learning that can incorporate new data during inference could enhance the

adaptability and robustness of value functions.

In summary, we present a unified and data-efficient framework that brings compositional

value-based functions into learning-based planning and generation. By embedding inductive

structures into value functions and leveraging the modularity of graph and logic-based abstractions,

our approach bridges the gap between scalable deep learning and structured decision-making. The

proposed methods demonstrate robust generalization, improved controllability, and adaptability

across a wide range of domains. We hope this study serves as a foundation for future research in

compositional intelligence, making AI systems that can reason, plan, and generate in a principled

and scalable way.
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